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PySB is a framework for building mathematical rule-based models of biochemical systems as Python programs.
PySB abstracts the complex process of creating equations describing interactions among multiple proteins (or other
biomolecules) into a simple and intuitive domain specific language embedded within Python. PySB accomplishes
this by automatically generating sets of BNGL or Kappa rules and using the rules for simulation or analysis. PySB
makes it straightforward to divide models into modules and to call libraries of reusable elements (macros) that encode
standard biochemical actions. These features promote model transparency, reuse and accuracy. PySB interoperates
with standard scientific Python libraries such as NumPy, SciPy and SymPy to enable model simulation and analysis.

Contents:

Contents 1

http://www.bionetgen.org
http://dev.executableknowledge.org
http://numpy.scipy.org
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http://sympy.org
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2 Contents



CHAPTER 1

Installation

There are two different ways to install and use PySB:

1. Install PySB natively on your computer (recommended).

OR

2. Download a Docker container with PySB and Jupyter Notebook. If you are familiar with Docker, PySB can
be installed from the Docker Hub by typing docker pull pysb/pysb. Further details are below.

Note: Need Help? If you run into any problems with installation, please visit our chat room: https://gitter.im/pysb/
pysb

1.1 Option 1: Install PySB natively on your computer

1. Install Anaconda

Our recommended approach is to use Anaconda, which is a distribution of Python containing most of the nu-
meric and scientific software needed to get started. If you are a Mac or Linux user, have used Python before
and are comfortable using pip to install software, you may want to skip this step and use your existing Python
installation.

Anaconda has a simple graphical installer which can be downloaded from https://www.anaconda.com/products/
individual - select your operating system and download the 64 bit version. From PySB 2.0, we only support
Python 3.x (see the Frequently Asked Questions for specific version support). The default installer options are
usually appropriate.

2. Install PySB

The installation is very straightforward with conda - type the following in a terminal:

conda install -c alubbock pysb

3
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Note: You may wish to use the Anaconda prompt, which sets up the Anaconda paths automatically, rather than
the standard command prompt or terminal on your operating system. Otherwise, you may have to use the full
path to the conda command each time, and may end up using the system version of Python, rather than the
Anaconda one.

Note: You can also install PySB using pip, but in that case you will need to manually install BioNetGen into
the default path for your platform (/usr/local/share/BioNetGen on Mac and Linux, c:\Program Files\BioNetGen
on Windows), or set the BNGPATH environment variable to the BioNetGen path on your machine.

3. Start Python and PySB

If you installed Python using Anaconda on Windows, search for and select IPython from your Start Menu
(Windows). Otherwise, open a terminal and type python to get started (or ipython, if installed).

You will then be at the Python prompt. Type import pysb to try loading PySB. If no error messages appear
and the next Python prompt appears, you have succeeded in installing PySB! You can now proceed to the
Tutorial.

1.1.1 Recommended additional software

The following software is not required for the basic operation of PySB, but provides extra capabilities and features
when installed.

• cython Cython is a package for compiling Python code into C code on the fly. It is used by pysb.simulator.
ScipyOdeSimulator to greatly improve the speed of ODE integration. PySB will detect and use Cython
automatically, if available. To install with Anaconda, type conda install cython. With pip, type pip
install cython.

• matplotlib

This Python package allows you to plot the results of your simulations. It is not a hard requirement of PySB but
many of the example scripts use it. matplotlib is included with Anaconda. Otherwise, it can be installed with
pip install matplotlib.

• pandas

This Python package provides extra capabilities for examining large numerical datasets, with statistical sum-
maries and database-like manipulation capabilities. It is not a hard requirement of PySB, but it is a useful
addition, particularly with large sets of simulation results. pandas is included with Anaconda. Otherwise, it can
be installed with pip install pandas.

• IPython

An alternate interactive Python shell, much improved over the standard one. IPython is included with Anaconda.
Otherwise, it can be installed with pip install ipython.

• Kappa 4.0

Kappa is a rule-based modeling tool that can produce several useful model visualizations or perform an agent-
based model simulation. PySB optionally interfaces with its KaSim simulator and KaSa static analyzer.

To install Kappa for PySB use, put the KaSim executable (and optionally KaSa if you have it) in /usr/
local/share/KaSim (Mac or Linux) or C:\\Program Files\\KaSim (Windows). If you would like
to put it somewhere else, set the KAPPAPATH environment variable to the full path to the folder containing the
KaSim and KaSa executables. Note that if you have downloaded the official binary build of KaSim, it will be
named something like KaSim_4.0_winxp.exe or KaSim_4.0_mac_OSX_10.10. Regardless of where
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you install it, you will need to rename the file to strip out the version and operating system information so that
you have just KaSim.exe (Windows) or KaSim (Mac or Linux).

On Anaconda, Kappa can be installed with conda install -c alubbock kappa.

1.2 Option 2: Docker container with PySB and Jupyter Notebook

1.2.1 Background

Docker is a virtualization platform which encapsulates software within a container. It can be thought of like a virtual
machine, only it contains just the application software (and supporting dependencies) and not a full operating system
stack.

1.2.2 Install Docker and the PySB software stack

1. Install Docker

To use PySB with Docker, first you’ll need to install Docker, which can be obtained from https://www.docker.
com/community-edition#/download (Windows and Mac). Linux users should use their package manager (e.g.
apt-get).

2. Download the PySB software stack from the Docker Hub

On the command line, this requires a single command:

docker pull pysb/pysb

This only needs to be done once, or when software updates are required.

3. Start the container

Start the Docker container with the following command (on Linux, the command may need to be prefixed with
sudo):

docker run -it --rm -p 8888:8888 pysb/pysb

This starts the PySB Docker container with Jupyter notebook and connects it to port 8888.

4. Open Jupyter Notebook in a web browser

Open a web browser of your choice and enter the address http://localhost:8888 in the address bar. You should
see a web page with the Jupyter notebook logo. Several example and tutorial notebooks are included to get you
started.

1.2.3 Important notes for Docker installations

To see graphics from matplotlib within the Jupyter Notebook, you’ll need to set the following option in your notebooks
before calling any plot commands:

%matplotlib inline

Any Jupyter notebooks created will be saved in the container itself, rather than on the host computer. Notebooks can
be downloaded using the Jupyter interface, or a directory on the host computer can be shared with the container.

The PySB container builds on the Jupyter SciPy notebook, which contains further information on the options available
for the container (such as sharing a directory with the host computer to preserve notebooks, setting a password and
more). Documentation from the Jupyter project is available at https://hub.docker.com/r/jupyter/scipy-notebook/

1.2. Option 2: Docker container with PySB and Jupyter Notebook 5
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CHAPTER 2

Tutorial

2.1 Introduction

This tutorial will walk you through the creation and simulation of a PySB model.

2.2 First steps

Once you have installed PySB, run the following commands from a Python interpreter to check that the basic function-
ality is working. This will define a model that synthesizes a molecule “A” at the rate of 3 copies per second, simulates
that model from t=0 to 60 seconds and displays the amount of A sampled at intervals of 10 seconds:

>>> from pysb import *
>>> from pysb.integrate import Solver
>>> Model()
<Model '<interactive>' (monomers: 0, rules: 0, parameters: 0, compartments: 0) at ...>
>>> Monomer('A')
Monomer('A')
>>> Parameter('k', 3.0)
Parameter('k', 3.0)
>>> Rule('synthesize_A', None >> A(), k)
Rule('synthesize_A', None >> A(), k)
>>> t = [0, 10, 20, 30, 40, 50, 60]
>>> solver = Solver(model, t)
>>> solver.run()
>>> print(solver.y[:, 0])
[ 0. 30. 60. 90. 120. 150. 180.]

7
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2.3 Creating a model

The example above notwithstanding, PySB model definition is not meant to be performed in an interactive environ-
ment. The proper way to create a model is to write the code in a .py file which can then be loaded interactively or
in other scripts for analysis and simulation. Here are the Python statements necessary to define the model from First
steps above. Save this code in a file named tutorial_a.py (you can find a copy of this file and all other named
scripts from the tutorial in pysb/examples/):

from pysb import *

Model()
Monomer('A')
Parameter('k', 3.0)
Rule('synthesize_A', None >> A(), k)

Note that we did not import pysb.integrate, define the t variable or create a Solver object. These are part of
model usage, not definition, so they do not belong here.

You may also be wondering why there are no assignment statements to be found. This is because every PySB
model component automatically assigns itself to a variable named identically to the component’s name (A, k and
synthesize_A above), or model in the case of the Model object itself. This is not standard Python behavior
but it makes models much more readable. The Component section below explains a bit more about this feature, and
technical readers can find even more in the Self-export section.

2.4 Using a model

Now that we have created a model file, we will see how to load it and do something with it. Here is
run_tutorial_a.py, the code corresponding to the rest of the example from First steps.

from __future__ import print_function
from pysb.simulator import ScipyOdeSimulator
from tutorial_a import model

t = [0, 10, 20, 30, 40, 50, 60]
simulator = ScipyOdeSimulator(model, tspan=t)
simresult = simulator.run()
print(simresult.species)

The one line that’s been added relative to the original listing is from tutorial_a import model. Since PySB
models are just Python code, we use the standard python import mechanism to load them. The variable model
which holds the Model object is explicitly chosen for import. All other model components defined in tutorial_a.
py are accessible through model, so there is little need to import them separately.

2.5 Model creation in depth

Every model file must begin with these two lines:

from pysb import *
Model()

The first line brings in all of the Python classes needed to define a model. The second line creates an instance of the
Model class and implicitly assigns this object to the variable model. We won’t have to refer to model within the
model file itself, rather this is the symbol we will later import from other code in order to make use of the model.

8 Chapter 2. Tutorial
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The rest of the model file will be component declarations. There are several types of components, some required and
others optional. The required types are Monomer, Parameter and Rule – we have already encountered these in
tutorial_a.py. The optional ones are Observable and Compartment. Each of these component types is
represented by a Python class which inherits from the base class Component. The following sections will explain
what each of these component types does in a model and how to create them.

2.5.1 Component

The base Component class is never explicitly used in a model, but it defines two pieces of basic functionality that are
common to all component types. The first is a name attribute, which is specified as the first argument to the constructor
for all subclasses of Component. The second is the “self-export” functionality, which automatically assigns every
component to a local variable named for its name attribute. Self-export helps streamline model definition, making it
feel much more like a domain-specific language like BNGL or Kappa. A justification for the technically-minded for
this somewhat unusual behavior may be found in the Self-export section near the end of the tutorial.

2.5.2 Monomer

Monomers are the indivisible elements that will make up the molecules and complexes whose behavior you intend to
model. Typically they will represent a specific protein or other biomolecule such as “EGFR” or “ATP”. Monomers
have a name (like all components) as well as a list of sites. Sites are named locations on the monomer which can
bind with a site on another monomer and/or take on a state. Binding merely represents aggregation, not necessarily a
formal chemical bond. States can range from the biochemically specific (e.g. “phosphorylated/unphosphorylated” to
the generic (e.g. “active/inactive”). The site list is technically optional (as seen in tutorial_a.py) but only the
simplest toy models will be able to get by without them.

The Monomer constructor takes a name, followed by a list of site names, and finally a dict specifying the
allowable states for the sites. Sites used only for binding may be omitted from the dict.

Here we will define a monomer representing the protein Raf, for use in a model of the MAPK signaling cascade.
We choose to give our Raf monomer two sites: s represents the serine residue on which it is phosphorylated by
Ras to activate its own kinase activity, and k represents the catalytic kinase domain with which it can subsequently
phosphorylate MEK. Site s can take on two states: ‘u’ for unphosphorylated and ‘p’ for phosphorylated:

Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']})

Now let’s provide a definition for MEK, the substrate of Raf. MEK has two serine residues at positions 218 and 222
in the amino acid sequence which are both phosphorylated by Raf. We can’t call them both s as site names must be
unique within a monomer, so we’ve used the residue numbers in the sites’ names to distinguish them: s218 and s222.
MEK has a kinase domain of its own for which we’ve again used k:

Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']})

Adding these two monomer definitions to a new model file tutorial_b.py yields the following:

from pysb import *

Model()
Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']})
Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']})

We can import this model in an interactive Python session and explore its monomers:

>>> from tutorial_b import model
>>> model.monomers

(continues on next page)

2.5. Model creation in depth 9
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(continued from previous page)

ComponentSet([
Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']}),
Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']}),
])

>>> [m.name for m in model.monomers]
['Raf', 'MEK']
>>> model.monomers[0]
Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']})
>>> model.monomers.keys()
['Raf', 'MEK']
>>> model.monomers['MEK']
Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']})
>>> model.monomers['MEK'].sites
['s218', 's222', 'k']

The Model class has a container for each component type, for example monomers holds the monomers. These
component objects are the very same ones you defined in your model script – they were implicitly added to the
model’s monomers container by the self-export system. This container is a ComponentSet, a special PySB class
which acts like a list, a dict and a set rolled into one, although it can only hold Component objects and can only be
appended to (never deleted from). Its list personality allows you to iterate over the components or index an individual
component by integer position, with the ordering of the values corresponding to the order in which the components
were defined in the model. Its dict personality allows you to index an individual component with its string name and
use the standard keys and items methods. The set personality allows set operations with ordering retained. For
binary set operators, the left-hand operand’s ordering takes precedence.

We can also access the fields of a Monomer object such as name and sites. See the PySB core (pysb.core) section
of the module reference for documentation on the fields and methods of all the component classes.

2.5.3 Parameter

Parameters are constant numerical values that represent biological constants. A parameter can be used as a reaction
rate constant, compartment volume or initial (boundary) condition for a molecular species. Other than name, the only
other attribute of a parameter is its numerical value.

The Parameter constructor takes the name and value as its two arguments. The value is optional and defaults
to 0.

Here we will define three parameters: a forward reaction rate for the binding of Raf and MEK and initial conditions
for those two proteins:

Parameter('kf', 1e-5)
Parameter('Raf_0', 7e4)
Parameter('MEK_0', 3e6)

Add these parameter definitions to our tutorial_b model file to create tutorial_c.py:

from pysb import *

Model()
Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']})
Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']})
Parameter('kf', 1e-5)
Parameter('Raf_0', 7e4)
Parameter('MEK_0', 3e6)

Then explore the parameters container:

10 Chapter 2. Tutorial
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>>> from tutorial_c import model
>>> model.parameters
ComponentSet([
Parameter('kf', 1e-05),
Parameter('Raf_0', 70000.0),
Parameter('MEK_0', 3000000.0),
])

>>> model.parameters['Raf_0'].value
70000.0

Parameters as defined are unitless, so you’ll need to maintain unit consistency on your own. Best practice is to use
number of molecules for species concentrations (i.e. initial conditions) and S.I. units for everything else: unimolecular
rate constants in 𝑠−1, bimolecular rate constants in #𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠−1 × 𝑠−1, compartment volumes in 𝐿, etc.

In the following sections we will see how parameters are used to build other model components.

2.5.4 Rules

Rules define chemical reactions between molecules and complexes. A rule consists of a name, a pattern describing
which molecular species should act as the reactants, another pattern describing how reactants should be transformed
into products, and parameters denoting the rate constants.

The Rule constructor takes a name, a RuleExpression containing the reactant and product patterns (more
on that below) and one or two Parameter objects for the rate constants. It also takes several optional boolean flags
as kwargs which alter the behavior of the rule in certain ways.

Rules, as described in this section, comprise the basic elements of procedural instructions that encode biochemical
interactions. In its simplest form a rule is a chemical reaction that can be made general to a range of monomer states
or very specific to only one kind of monomer in one kind of state. We follow the style for writing rules as described in
BioNetGen but the style proposed by Kappa is quite similar with only some differences related to the implementation
details (e.g. mass-action vs. stochastic simulations, compartments or no compartments, etc). We will write two rules
to represent the interaction between the reactants and the products in a two-step manner.

The general pattern for a rule consists of the statement Rule and in parenthesis a series of statements separated by
commas, namely the rule name (string), the rule interactions, and the rule parameters. The rule interactions make use
of the following operators:

*+* operator to represent complexation

*|* operator to represent backward/forward reaction

*>>* operator to represent forward-only reaction

*%* operator to represent a binding interaction between two species

Note: PySB used to use the <> operator for reversible rules, but that operator was removed in Python 3. All new
models should use the | operator instead. Support for the <> in PySB with Python 2 will be removed in a future version
of PySB.

To illustrate the use of the operators and the rule syntax we write the complex formation reaction with labels illustrating
the parts of the rule:

Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') | C8(b=1) % Bid(b=1, S='u'), *[kf,
→˓ kr])

| | | | | | | | |
| | | | | | | |

→˓parameter list

(continues on next page)
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| | | | | | | |
| | | | | | | bound species
| | | | | | |
| | | | | | binding operator
| | | | | |
| | | | | bound species
| | | | |
| | | | forward/backward operator
| | | |
| | | unbound species
| | |
| | complexation / addition operator
| |
| unbound species

rule name

The rule name can be any string and should be enclosed in single (‘) or double (”) quotation marks. The species are
instances of the mononmers in a specific state. In this case we are requiring that C8 and Bid are both unbound, as we
would not want any binding to occur with species that are previously bound. The complexation or addition operator
tells the program that the two species are being added, that is, undergoing a transition, to form a new species as
specified on the right side of the rule. The forward/backward operator states that the reaction is reversible. Finally the
binding operator indicates that there is a bond formed between two or more species. This is indicated by the matching
integer (in this case 1) in the bonding site of both species along with the binding operator. If a non-reversible rule is
desired, then the forward-only operator can be replaced for the forward/backward operator.

In order to actually change the state of the Bid protein we must now edit the monomer so that have an actual state site
as follows:

Monomer('Bid', ['b', 'S'], {'S':['u', 't']})

Having added the state site we can now further specify the state of the Bid protein when it undergoes rule-based
interactions and explicitly indicate the changes of the protein state.

With this state site added, we can now go ahead and write the rules that will account for the binding step and the
unbinding step as follows:

Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') | C8(b=1) % Bid(b=1, S='u'), kf,
→˓kr)
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) % Bid(b=None, S='t'),
→˓kc)

As shown, the initial reactants, C8 and Bid initially in the unbound state and, for Bid, in the ‘u’ state, undergo a
complexation reaction and further a dissociation reaction to return the original C8 protein and the Bid protein but now
in the ‘t’ state, indicating its truncation. Make these additions to your mymodel.py file. After you are done, your
file should look like this:

# import the pysb module and all its methods and functions
from pysb import *

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S': ['u', 't']})

(continues on next page)
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# input the parameter values
Parameter('kf', 1.0e-07)
Parameter('kr', 1.0e-03)
Parameter('kc', 1.0)

# now input the rules
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') | C8(b=1) % Bid(b=1, S='u'), kf,
→˓kr)
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t'),
→˓kc)

Once you are done editing your file, start your ipython (or python) interpreter and type the commands at the prompts
below. Once you load your model you should be able to probe and check that you have the correct monomers,
parameters, and rules. Your output should be very similar to the one presented (output shown below the '>>>'
python prompts).:

>>> import mymodel as m
>>> m.model.monomers

ComponentSet([
Monomer('C8', ['b']),
Monomer('Bid', ['b', 'S'], {'S': ['u', 't']}),
])

>>> model.parameters
ComponentSet([
Parameter('kf', 1e-07),
Parameter('kr', 0.001),
Parameter('kc', 1.0),
Parameter('C8_0', 1000.0),
Parameter('Bid_0', 10000.0),
])

>>> m.model.rules
ComponentSet([
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') | C8(b=1) % Bid(b=1, S='u'),

→˓kf, kr),
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t

→˓'), kc),
])

With this we are almost ready to run a simulation; all we need now is to specify the initial conditions of the system.

2.5.5 Observables

In our model we have two initial species (C8 and Bid) and one output species (tBid). As can be seen in the ODEs
derived from the reactions above, there are four mathematical species needed to describe the evolution of the system
(i.e. C8, Bid, tBid, and C8:Bid). Although this system is rather small, there are situations when we will have many
more species than we care to monitor or characterize throughout the time evolution of the ODEs. In addition, it will
often happen that the desirable species are combinations or sums of many other species. For this reason the rules-based
engines we currently employ implement the Observables call which automatically collects the necessary information
and returns the desired species. In our case, we will monitor the amount of free C8, unbound Bid, and active tBid. To
specify the observables enter the following lines in your mymodel.py file as follows:

Observable('obsC8', C8(b=None))
Observable('obsBid', Bid(b=None, S='u'))
Observable('obstBid', Bid(b=None, S='t'))
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As shown, the observable can be a species. As we will show later the observable can also contain wild-cards and
given the “don’t care don’t write” approach to rule-writing, it can be a very powerful approach to observe activated
complexes.

2.6 Initial conditions

Having specified the monomers, the parameters and the rules we have the basics of what is needed to generate a set of
ODEs and run a model. From a mathematical perspective a system of ODEs can only be solved if a bound is placed
on the ODEs for integration. In our case, these bounds are the initial conditions of the system that indicate how much
non-zero initial species are present at time t=0s in the system. In our system, we only have two initial species, namely
C8 and Bid so we need to specify their initial concentrations. To do this we enter the following lines of code into the
mymodel.py file:

Parameter('C8_0', 1000)
Parameter('Bid_0', 10000)
Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)

A parameter object must be declared to specify the initial condition rather than just giving a value as shown above.
Once the parameter object is declared (i.e. C8_0 and Bid_0) it can be fed to the Initial definition. Now that we have
specified the initial conditions we are basically ready to run simulations. We will add an observables call in the next
section prior to running the simulation.

2.7 Simulation and analysis

By now your mymodel.py file should look something like this:

# import the pysb module and all its methods and functions
from pysb import *

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't']})

# input the parameter values
Parameter('kf', 1.0e-07)
Parameter('kr', 1.0e-03)
Parameter('kc', 1.0)

# now input the rules
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') | C8(b=1) % Bid(b=1, S='u'), *[kf,
→˓ kr])
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t'),
→˓kc)

# initial conditions
Parameter('C8_0', 1000)
Parameter('Bid_0', 10000)
Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)

(continues on next page)
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# Observables
Observable('obsC8', C8(b=None))
Observable('obsBid', Bid(b=None, S='u'))
Observable('obstBid', Bid(b=None, S='t'))

You can use a few commands to check that your model is defined properly. Start your ipython (or python) interpreter
and enter the commands as shown below. Notice the output should be similar to the one shown (output shown below
the '>>>'` prompts):

>>> import mymodel as m
>>> m.model.monomers

ComponentSet([
Monomer('C8', ['b']),
Monomer('Bid', ['b', 'S'], {'S': ['u', 't']}),
])

>>> m.model.parameters
ComponentSet([
Parameter('kf', 1e-07),
Parameter('kr', 0.001),
Parameter('kc', 1.0),
Parameter('C8_0', 1000.0),
Parameter('Bid_0', 10000.0),
])

>>> m.model.observables
ComponentSet([
Observable('obsC8', C8(b=None)),
Observable('obsBid', Bid(b=None, S='u')),
Observable('obstBid', Bid(b=None, S='t')),
])

>>> m.model.initials
[Initial(C8(b=None), C8_0), Initial(Bid(b=None, S='u'), Bid_0)]

>>> m.model.rules
ComponentSet([
Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') | C8(b=1) % Bid(b=1, S='u'),

→˓kf, kr),
Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t

→˓'), kc),
])

With this we are now ready to run a simulation! The parameter values for the simulation were taken directly from typ-
ical values in the paper about extrinsic apoptosis signaling. To run the simulation we must use a numerical integrator.
Common examples include LSODA, VODE, CVODE, Matlab’s ode15s, etc. We will use two python modules that
are very useful for numerical manipulation. We have adapted the integrators in the SciPy*[#sp]_ module to function
seamlessly with PySB for integration of ODE systems. We will also be using the *PyLab2 package for graphing and
plotting from the command line.

We will begin our simulation by loading the model from the ipython (or python) interpreter as shown below:

>>> import mymodel as m

You can check that your model imported correctly by typing a few commands related to your model as shown:

2 PyLab: http://www.scipy.org/PyLab
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>>> m.mymodel.monomers
>>> m.mymodel.rules

Both commands should return information about your model. (Hint: If you are using iPython, you can press tab twice
after “m.mymodel” to tab complete and see all the possible options).

Now, we will import the PyLab and PySB simulator module. Enter the commands as shown below:

>>> from pysb.simulator import ScipyOdeSimulator
>>> import pylab as pl

We have now loaded the integration engine and the graph engine into the interpreter environment. You may get some
feedback from the program as some functions can be compiled at runtime for speed, depending on your operating
system. Next we need to tell the integrator the time domain over which we wish to integrate the equations. For our
case we will use 20000𝑠 of simulation time. To do this we generate an array using the linspace function from PyLab.
Enter the command below:

>>> t = pl.linspace(0, 20000)

This command assigns an array in the range [0..20000] to the variable t. You can type the name of the variable at any
time to see the content of the variable. Typing the variable t results in the following:

>>> t
array([ 0. , 408.16326531, 816.32653061, 1224.48979592,

1632.65306122, 2040.81632653, 2448.97959184, 2857.14285714,
3265.30612245, 3673.46938776, 4081.63265306, 4489.79591837,
4897.95918367, 5306.12244898, 5714.28571429, 6122.44897959,
6530.6122449 , 6938.7755102 , 7346.93877551, 7755.10204082,
8163.26530612, 8571.42857143, 8979.59183673, 9387.75510204,
9795.91836735, 10204.08163265, 10612.24489796, 11020.40816327,
11428.57142857, 11836.73469388, 12244.89795918, 12653.06122449,
13061.2244898 , 13469.3877551 , 13877.55102041, 14285.71428571,
14693.87755102, 15102.04081633, 15510.20408163, 15918.36734694,
16326.53061224, 16734.69387755, 17142.85714286, 17551.02040816,
17959.18367347, 18367.34693878, 18775.51020408, 19183.67346939,
19591.83673469, 20000. ])

These are the points at which we will get data for each ODE from the integrator. With this, we can now run our
simulation. Enter the following commands to run the simulation and get the results:

>>> simres = ScipyOdeSimulator(m.model, tspan=t).run()
>>> yout = simres.all

To verify that the simulation run you can see the content of the yout object. For example, check for the content of the
Bid observable defined previously:

>>> yout['obsBid']
array([10000. , 9600.82692793, 9217.57613337, 8849.61042582,

8496.32045796, 8157.12260855, 7831.45589982, 7518.7808708 ,
7218.58018014, 6930.35656027, 6653.63344844, 6387.95338333,
6132.87596126, 5887.9786933 , 5652.8553495 , 5427.11687478,
5210.38806188, 5002.31066362, 4802.53910592, 4610.74136092,
4426.60062334, 4249.81001719, 4080.07733278, 3917.1205927 ,
3760.66947203, 3610.46475238, 3466.25716389, 3327.80762075,
3194.88629188, 3067.27263727, 2944.75491863, 2827.12948551,
2714.20140557, 2605.78289392, 2501.69402243, 2401.76203172,
2305.8208689 , 2213.71139112, 2125.28052884, 2040.38151896,

(continues on next page)
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1958.87334783, 1880.62057855, 1805.49336521, 1733.36675338,
1664.12107023, 1597.64120743, 1533.81668871, 1472.54158105,
1413.71396601, 1357.23623273])

As you may recall we named some observables in the Observables section above. The variable yout contains an array
of all the ODE outputs from the integrators along with the named observables (i.e. obsBid, obstBid, and obsC8) which
can be called by their names. We can therefore plot this data to visualize our output. Using the commands imported
from the PyLab module we can create a graph interactively. Enter the commands as shown below:

>>> pl.ion()
>>> pl.figure()
>>> pl.plot(t, yout['obsBid'], label="Bid")
>>> pl.plot(t, yout['obstBid'], label="tBid")
>>> pl.plot(t, yout['obsC8'], label="C8")
>>> pl.legend()
>>> pl.xlabel("Time (s)")
>>> pl.ylabel("Molecules/cell")
>>> pl.show()

You should now have a figure in your screen showing the number of Bid molecules from the initial amount decreasing
over time, the number of tBid molecules increasing over time, and the number of free C8 molecules decrease to about
half. For help with the above commands and to see more commands related to PyLab check the documentation2. Your
figure should look something like the one below:

Congratulations! You have created your first model and run a simulation!
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2.8 Visualization

It is useful to visualize the species and reactions that make a model. We have provided two methods to visualize
species and reactions. We recommend using the tools in Kappa and BioNetGen for other visualization tools such as
contact maps and stories.

The simplest way to visualize a model is to generate the graph file using the programs available from the command
line. The files are located in the .../pysb/tools directory. The files to visualize reactions and species are
render_reactions.py and render_species.py. These python scripts will generate .dot graph files that
can be visualized using several tools such as OmniGraffle in OS X or GraphViz in all major platforms. For this tutorial
we will use the GraphViz renderer. For this example we will visualize the mymodel.py file that was created earlier.
Issue the following command, replacing the comments inside square brackets‘‘[]‘‘ with the correct paths. We will first
generate the .dot from the command line as follows:

[path-to-pysb]/pysb/tools/render_reactions.py [path-to-pysb-model-file]/mymodel.py >
→˓mymodel.dot

If your model can be properly visualized you should have gotten no errors and should now have a file called
mymodel.dot. You can now use this file as an input for any visualization tool as described above. You can follow
the same procedures with the render_species.py script to visualize the species generated by your models.

2.9 Higher-order rules

For this section we will show the power of working in a programming environment by creating a simple function
called “catalyze”. Catalysis happens quite often in models and it is one of the basic functions we have found useful in
our model development. Rather than typing many lines such as:

Rule("association", Enz(b=None) + Sub(b=None, S="i") | Enz(b=1)%Sub(b=1,S="i"), kf,
→˓kr)
Rule("dissociation", Enz(b=1)%Sub(b=1,S="i") >> Enz(b=None) + Sub(b=None, S="a"), kc)

multiple times, we find it more powerful, transparent and easy to instantiate/edit a simple, one-line function call such
as:

catalyze(Enz, Sub, "S", "i", "a", kf, kr, kc)

We find that the functional form captures what we mean to write: a chemical species (the substrate) undergoes catalytic
activation (by the enzyme) with a given set of parameters. We will now describe how a function can be written in PySB
to automate the scripting of simple concepts into a programmatic format. Examine the function below:

def catalyze(enz, sub, site, state1, state2, kf, kr, kc): # (0) function call
"""2-step catalytic process""" # (1) reaction name
r1_name = '%s_assoc_%s' % (enz.name, sub.name) # (2) name of association

→˓reaction for rule
r2_name = '%s_diss_%s' % (enz.name, sub.name) # (3) name of

→˓dissociation reaction for rule
E = enz(b=None) # (4) define enzyme state

→˓in function
S = sub({'b': None, site: state1}) # (5) define substrate

→˓state in function
ES = enz(b=1) % sub({'b': 1, site: state1}) # (6) define state of

→˓enzyme:substrate complex
P = sub({'b': None, site: state2}) # (7) define state of

→˓product

(continues on next page)
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Rule(r1_name, E + S | ES, kf, kr) # (8) rule for enzyme +
→˓substrate association (bidirectional)

Rule(r2_name, ES >> E + P, kc) # (9) rule for
→˓enzyme:substrate dissociation (unidirectional)

As shown it takes about ten lines to write the catalyze function (shorter variants are certainly possible with more
advanced Python statements).

As shown, Monomers, Parameters, Species, and pretty much anything related to rules-based modeling are instantiated
as objects in Python. One could write functions to interact with these objects and they could be instantiated and inherit
methods from a class. The limits to programming biology with PySB are those enforced by the Python language
itself. We can now go ahead and embed this into a model. Go back to your mymodel.py file and modify it to look
something like this:

# import the pysb module and all its methods and functions
from pysb import *

def catalyze(enz, sub, site, state1, state2, kf, kr, kc): # function call
"""2-step catalytic process""" # reaction name
r1_name = '%s_assoc_%s' % (enz.name, sub.name) # name of association

→˓reaction for rule
r2_name = '%s_diss_%s' % (enz.name, sub.name) # name of dissociation

→˓reaction for rule
E = enz(b=None) # define enzyme state in

→˓function
S = sub({'b': None, site: state1}) # define substrate state

→˓in function
ES = enz(b=1) % sub({'b': 1, site: state1}) # define state of

→˓enzyme:substrate complex
P = sub({'b': None, site: state2}) # define state of product
Rule(r1_name, E + S | ES, kf, kr) # rule for enzyme +

→˓substrate association (bidirectional)
Rule(r2_name, ES >> E + P, kc) # rule for

→˓enzyme:substrate dissociation (unidirectional)

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't']})

# input the parameter values
Parameter('kf', 1.0e-07)
Parameter('kr', 1.0e-03)
Parameter('kc', 1.0)

# OLD RULES
# Rule('C8_Bid_bind', C8(b=None) + Bid(b=None, S='u') | C8(b=1) % Bid(b=1, S='u'),
→˓*[kf, kr])
# Rule('tBid_from_C8Bid', C8(b=1) % Bid(b=1, S='u') >> C8(b=None) + Bid(b=None, S='t
→˓'), kc)
#
# NEW RULES
# Catalysis

(continues on next page)
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catalyze(C8, Bid, 'S', 'u', 't', kf, kr, kc)

# initial conditions
Parameter('C8_0', 1000)
Parameter('Bid_0', 10000)
Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)

# Observables
Observable('obsC8', C8(b=None))
Observable('obsBid', Bid(b=None, S='u'))
Observable('obstBid', Bid(b=None, S='t'))

With this you should be able to execute your code and generate figures as described in the previous sections.

2.10 Using provided macros

For further reference we invite the users to explore the macros.py file in the .../pysb/ directory. Based on
our experience with modeling signal transduction pathways we have identified a set of commonly-used constructs
that can serve as building blocks for more complex models. In addition to some meta-macros useful for instantiating
user macros, we provide a set of macros such as equilibrate. bind, catalyze, catalyze_one_step,
catalyze_one_step_reversible, synthesize, degrade, assemble_pore_sequential, and
pore_transport. In addition to these basic macros we also provide the higher-level macros bind_table and
catalyze_table which we have found useful in instantiating the interactions between families of models.

In what follows we expand our previous model example of Caspase-8 by adding a few more species. The initiator
caspase, as was described earlier, catalytically cleaves Bid to create truncated Bid (tBid) in this model. This
tBid then catalytically activates Bax and Bak which eventually go on to form pores at the mitochondria leading
to mitochondrial outer-membrane permeabilization (MOMP) and eventual cell death. To introduce the concept of
higher-level macros we will show how the bind_table macro can be used to show how a family of inhibitors,
namely Bcl-2, Bcl-xL, and Mcl-1 inhibits a family of proteins, namely Bid, Bax, and Bak.

In your favorite editor, go ahead and create a file (I will refer to it as ::file::mymodel_fxns). Many rules that dictate
the interactions among species depend on a single binding site. We will begin by creating our model and declaring
a generic binding site. We will also declare some functions, using the PySB macros and tailor them to our needs by
specifying the binding site to be passed to the function. The first thing we do is import PySB and then import PySB
macros. Then we declare our generic site and redefine the pysb.macros for our model as follows:

# import the pysb module and all its methods and functions
from pysb import *
from pysb.macros import *

# some functions to make life easy
site_name = 'b'
def catalyze_b(enz, sub, product, klist):

"""Alias for pysb.macros.catalyze with default binding site 'b'.
"""
return catalyze(enz, site_name, sub, site_name, product, klist)

def bind_table_b(table):
"""Alias for pysb.macros.bind_table with default binding sites 'bf'.
"""
return bind_table(table, site_name, site_name)
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The first two lines just import the necessary modules from PySB. The catalyze_b` function, tailored for the
model, takes four inputs but feeds six inputs to the pysb.macros.catalyze function, hence making the model
more clean. Similarly the bind_table_b function takes only one entry, a list of lists, and feeds the entries needed
to the pysb.macros.bind_table macro. Note that these entries could be contained in a header file to be hidden
from the user at model time.

With this technical work out of the way we can now actually start our mdoel building. We will declare two sets of
rates, the bid_rates that we will use for all the Bid interactions and the bcl2_rates which we will use for all
the Bcl-2 interactions. These values could be specified individually as desired but it is common practice in models
to use generic values for the reaction rate parameters of a model and determine these in detail through some sort of
model calibration. We will use these values for now for illustrative purposes.

The next entries for the rates, the model declaration, and the Monomers follow:

# Bid activation rates
bid_rates = [ 1e-7, 1e-3, 1] #

# Bcl2 Inhibition Rates
bcl2_rates = [1.428571e-05, 1e-3] # 1.0e-6/v_mito

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't', 'm']})
Monomer('Bax', ['b', 'S'], {'S':['i', 'a', 'm']})
Monomer('Bak', ['b', 'S'], {'S':['i', 'a']})
Monomer('BclxL', ['b', 'S'], {'S':['c', 'm']})
Monomer('Bcl2', ['b'])
Monomer('Mcl1', ['b'])

As shown, the generic rates are declared followed by the declaration of the monomers. We have the C8 and Bid
monomers as we did in the initial part of the tutorial, the MOMP effectors Bid, Bax, Bak, and the MOMP inhibitors
Bcl-xL, Bcl-2, and Mcl-1. The Bid, Bax, and BclxL monomers, in addition to the active and inactive terms
also have a 'm' term indicating that they can be in a membrane, which in this case we indicate as a state. We will
have a translocation to the membrane as part of the reactions.

We can now begin to write some checmical procedures. The first procedure is the catalytic activation of Bid by C8.
This is followed by the catalytic activation of Bax and Bak.

# Activate Bid
catalyze_b(C8, Bid(S='u'), Bid(S='t'), [KF, KR, KC])

# Activate Bax/Bak
catalyze_b(Bid(S='m'), Bax(S='i'), Bax(S='m'), bid_rates)
catalyze_b(Bid(S='m'), Bak(S='i'), Bak(S='a'), bid_rates)

As shown, we simply state the species that acts as an enzyme as the first function argument, the species that acts as the
reactant with the enzyme as the second argument (along with any state specifications) and finally the product species.
The bid_rates argument is the list of rates that we declared earlier.

You may have noticed a problem with the previous statements. The Bid species undergoes a transformation from
state S='u' to S='t' but the activation of Bax and Bak happens only when Bid is in state S='m' to imply that
these events only happen at the membrane. In order to transport Bid from the 't' state to the 'm' state we need a
transport function. We achieve this by using the equilibrate macro in PySB between these states. In addition we use
this same macro for the transport of the Bax species and the BclxL species as shown below.
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# Bid, Bax, BclxL "transport" to the membrane
equilibrate(Bid(b=None, S='t'), Bid(b=None, S='m'), [1e-1, 1e-3])
equilibrate(Bax(b=None, S='m'), Bax(b=None, S='a'), [1e-1, 1e-3])
equilibrate(BclxL(b=None, S='c'), BclxL(b=None, S='m'), [1e-1, 1e-3])

According to published experimental data, the Bcl-2 family of inhibitors can inhibit the initiator Bid and the effector
Bax and Bak. This family has complex interactions with all these proteins. Given that we have three inhibitors, and
three molecules to be inhibited, this indicates nine interactions that need to be specified. This would involve writing
nine reversible reactions in a rules language or at least eighteen reactions for each direction if we were writing the
ODEs. Given that we are simply stating that these species bind to inhibit interactions, we can take advantage of two
things. In the first case we have already seen that there is a bind macro specified in PySB. We can further functionalize
this into a higher level macro, namely the bind_table macro, which takes a table of interactions as an argument and
generates the rules based on these simple interactions. We specify the bind table for the inhibitors (top row) and the
inhibited molecules (left column) as follows.

bind_table_b([[ Bcl2, BclxL(S='m'), Mcl1],
[Bid(S='m'), bcl2_rates, bcl2_rates, bcl2_rates],
[Bax(S='a'), bcl2_rates, bcl2_rates, None],
[Bak(S='a'), None, bcl2_rates, bcl2_rates]])

As shown the inhibitors interact by giving the rates of interactions or the “None” Python keyword to indicate no
interaction. The only thing left to run this simple model is to declare some initial conditions and some observables.
We declare the following:

# initial conditions
Parameter('C8_0', 1e4)
Parameter('Bid_0', 1e4)
Parameter('Bax_0', .8e5)
Parameter('Bak_0', .2e5)
Parameter('BclxL_0', 1e3)
Parameter('Bcl2_0', 1e3)
Parameter('Mcl1_0', 1e3)

Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)
Initial(Bax(b=None, S='i'), Bax_0)
Initial(Bak(b=None, S='i'), Bak_0)
Initial(BclxL(b=None, S='c'), BclxL_0)
Initial(Bcl2(b=None), Bcl2_0)
Initial(Mcl1(b=None), Mcl1_0)

# Observables
Observable('obstBid', Bid(b=None, S='m'))
Observable('obsBax', Bax(b=None, S='a'))
Observable('obsBak', Bax(b=None, S='a'))
Observable('obsBaxBclxL', Bax(b=1, S='a')%BclxL(b=1, S='m'))

By now you should have a file with all the components that looks something like this:

# import the pysb module and all its methods and functions
from pysb import *
from pysb.macros import *

# some functions to make life easy
site_name = 'b'
def catalyze_b(enz, sub, product, klist):

(continues on next page)
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(continued from previous page)

"""Alias for pysb.macros.catalyze with default binding site 'b'.
"""
return catalyze(enz, site_name, sub, site_name, product, klist)

def bind_table_b(table):
"""Alias for pysb.macros.bind_table with default binding sites 'bf'.
"""
return bind_table(table, site_name, site_name)

# Default forward, reverse, and catalytic rates
KF = 1e-6
KR = 1e-3
KC = 1

# Bid activation rates
bid_rates = [ 1e-7, 1e-3, 1] #

# Bcl2 Inhibition Rates
bcl2_rates = [1.428571e-05, 1e-3] # 1.0e-6/v_mito

# instantiate a model
Model()

# declare monomers
Monomer('C8', ['b'])
Monomer('Bid', ['b', 'S'], {'S':['u', 't', 'm']})
Monomer('Bax', ['b', 'S'], {'S':['i', 'a', 'm']})
Monomer('Bak', ['b', 'S'], {'S':['i', 'a']})
Monomer('BclxL', ['b', 'S'], {'S':['c', 'm']})
Monomer('Bcl2', ['b'])
Monomer('Mcl1', ['b'])

# Activate Bid
catalyze_b(C8, Bid(S='u'), Bid(S='t'), [KF, KR, KC])

# Activate Bax/Bak
catalyze_b(Bid(S='m'), Bax(S='i'), Bax(S='m'), bid_rates)
catalyze_b(Bid(S='m'), Bak(S='i'), Bak(S='a'), bid_rates)

# Bid, Bax, BclxL "transport" to the membrane
equilibrate(Bid(b=None, S='t'), Bid(b=None, S='m'), [1e-1, 1e-3])
equilibrate(Bax(b=None, S='m'), Bax(b=None, S='a'), [1e-1, 1e-3])
equilibrate(BclxL(b=None, S='c'), BclxL(b=None, S='m'), [1e-1, 1e-3])

bind_table_b([[ Bcl2, BclxL(S='m'), Mcl1],
[Bid(S='m'), bcl2_rates, bcl2_rates, bcl2_rates],
[Bax(S='a'), bcl2_rates, bcl2_rates, None],
[Bak(S='a'), None, bcl2_rates, bcl2_rates]])

# initial conditions
Parameter('C8_0', 1e4)
Parameter('Bid_0', 1e4)
Parameter('Bax_0', .8e5)
Parameter('Bak_0', .2e5)
Parameter('BclxL_0', 1e3)
Parameter('Bcl2_0', 1e3)

(continues on next page)
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Parameter('Mcl1_0', 1e3)

Initial(C8(b=None), C8_0)
Initial(Bid(b=None, S='u'), Bid_0)
Initial(Bax(b=None, S='i'), Bax_0)
Initial(Bak(b=None, S='i'), Bak_0)
Initial(BclxL(b=None, S='c'), BclxL_0)
Initial(Bcl2(b=None), Bcl2_0)
Initial(Mcl1(b=None), Mcl1_0)

# Observables
Observable('obstBid', Bid(b=None, S='m'))
Observable('obsBax', Bax(b=None, S='a'))
Observable('obsBak', Bax(b=None, S='a'))
Observable('obsBaxBclxL', Bax(b=1, S='a')%BclxL(b=1, S='m'))

With this you should be able to run the simulations and generate figures as described in the basic tutorial sections.

2.11 Compartments

We will continue building on your mymodel_fxns.py file and add one more species and a compartment. In
extrinsic apoptosis, once tBid is activated it translocates to the outer mitochondrial membrane where it interacts with
the protein Bak (residing in the membrane).

2.12 Model calibration

One option for model calibration in PySB is PyDREAM, which is an implementation of the DREAM algorithm
developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012).

2.13 Modules

See PySB Modules Reference for further details on the various PySB modules and the options available.

2.14 Miscellaneous

2.14.1 Self-export

For anyone who feels a little queasy about self-export, this section will try to explain the rationale behind it.

In order to make model definition feel like a domain-specific language specially designed for model construction, the
mechanism for component definition needs to provide three things:

• It must provide an internal name so that components can be usefully distinguished when inspected interactively,
or translated into various output file formats such as BNGL.

• The component object must be assigned to a local variable so that subsequent component declarations can
reference it by name using normal Python syntax (including operator overloading).

• The object must also be inserted into the data structures of the model object itself.
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Without self-export, every component definition would need to manage these points explicitly:

A = Monomer('A')
model.add_component(A)
B = Monomer('B')
model.add_component(B)

This pattern introduces several opportunities for error, for example a name argument and the corresponding variable
name may end up out of sync or the modeler may forget an add_component call. The redundancy also introduces
visual noise which makes the code harder to read. Furthermore, self-export makes model modularization much simpler,
as components may be defined within functions without forcing the function to explicitly return them or requiring extra
code in the caller to deal with the returned components.

In addition to Component and its subclasses, the Model constructor also utilizes self-export, with two differences:
The local variable is always named model, and the name argument is optional and defaults to the full hierarchical
name of the module from which Model() is called, e.g. pysb.examples.tutorial_a.
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CHAPTER 3

Frequently Asked Questions

Below are some of PySB’s frequently asked questions. If your question is not answered here, you can try our Gitter
channel. For more general Python related questions, we recommend Stack Overflow.

3.1 General

• What Python versions does PySB support?

The current release of PySB supports Python 3.6, 3.7, and 3.8. Earlier versions, including Python
2.7, are not supported from PySB 2.0 onwards.

In PySB version 1.5 and earlier, the <> operator was used for reversible rules. <> is pending
deprecation from PySB, and does not work at all in Python 3. All new models should use | as
the reversible rule operator. Previous models should be upgraded if compatibility with future PySB
versions is required.

3.2 Rule and Reaction Rate Laws

• Can I specify a non-mass action rate law?

Yes. PySB has a special entity for this, called Expressions. Expressions can be used in place of
Parameters for rule rates. Expressions can contain mathematical expressions and can utilize other
Expressions, Parameters, and Observables. Here’s a contrived example for demonstration purposes:

Parameter('A_multiplier', 2.0)
Observable('A_total', A())
Expression('kf_A`, A_total * A_multiplier)
Rule('bindA', A(b=None) + A(b=None) >> A(b=1) % A(b=1), kf_A)

Like Parameters, note that Expressions are multiplied by reactant species concentrations within a rule
to get the final rate.
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• Can I use a discontinuous rate law, like a Heaviside function?

Yes. For simple examples like the Heaviside function, one could simply write a rate Expression like
the following:

Observable('A_total', A())
Parameter('p1', 1.0)
Expression('e1', (A_total > 100) * p1))

The inequality in parentheses evaluates to 1 if True and 0 if False. Thus, the Expression will be equal
to p1 when A_total > 100 and 0 otherwise.

For more complex piecewise expressions, sympy’s Piecewise can be used:

Expression('kf_A', Piecewise((0, A_total < 400.0),
(0.001, A_total < 500.0),
(0.01, True)))

Piecewise takes a list of (value, condition) tuples. The Expression’s value will come from the first
condition which evaluates to True. Thus, for the Expression to always have a value, the last condition
should default to True.

3.3 Simulation

• How can I speed up my ScipyOdeSimulator simulation?

Check the cython library is installed. cython is a Python library which converts your system of
ordinary differential equations (ODEs) to C code, which is faster to execute than pure Python code.
You can check if cython is installed by trying to import it at the Python prompt:

import cython

If no ImportError appears, cython is available. Otherwise, you’ll need to install it using pip or conda.

When running large numbers of simulations, consider using the CupSodaSimulator if you have an
NVIDIA graphics card (GPU) available. It is a GPU-based simulator which can run lots of simula-
tions in parallel. See the Simulator module documentation for details.
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CHAPTER 4

PySB Modules Reference

4.1 PySB core (pysb.core)

class pysb.core.ANY
Site must have a bond, but identity of binding partner is irrelevant.

Use ANY in a MonomerPattern site_conditions dict to indicate that a site must have a bond without specifying
what the binding partner should be.

Equivalent to the “+” bond modifier in BNG.

class pysb.core.Compartment(name, parent=None, dimension=3, size=None, _export=True)
Model component representing a bounded reaction volume.

Parameters

parent [Compartment, optional] Compartment which contains this one. If not specified, this
will be the outermost compartment and its parent will be set to None.

dimension [integer, optional] The number of spatial dimensions in the compartment, either 2
(i.e. a membrane) or 3 (a volume).

size [Parameter or Expression, optional] A parameter or constant expression object whose value
defines the volume or area of the compartment. If not specified, the size will be fixed at 1.0.

Notes

The compartments of a model must form a tree via their parent attributes with a three-dimensional (volume)
compartment at the root. A volume compartment may have any number of two-dimensional (membrane) com-
partments as its children, but never another volume compartment. A membrane compartment may have a single
volume compartment as its child, but nothing else.

Examples

Compartment(‘cytosol’, dimension=3, size=cyto_vol, parent=ec_membrane)
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Attributes

Identical to Parameters (see above).

exception pysb.core.CompartmentAlreadySpecifiedError

class pysb.core.ComplexPattern(monomer_patterns, compartment, match_once=False)
A bound set of MonomerPatterns, i.e. a pattern to match a complex.

In BNG terms, a list of patterns combined with the ‘.’ operator.

Parameters

monomer_patterns [list of MonomerPatterns] MonomerPatterns that make up the complex.

compartment [Compartment or None] Location restriction. None means don’t care.

match_once [bool, optional] If True, the pattern will only count once against a species in which
the pattern can match the monomer graph in multiple distinct ways. If False (default),
the pattern will count as many times as it matches the monomer graph, leading to a faster
effective reaction rate.

Attributes

Identical to Parameters (see above).

copy()
Implement our own brand of shallow copy.

The new object will have references to the original compartment, and copies of the monomer_patterns.

is_concrete()
Return a bool indicating whether the pattern is ‘concrete’.

‘Concrete’ means the pattern satisfies ANY of the following: 1. All monomer patterns are concrete 2. The
compartment is specified AND all monomer patterns are site-concrete

is_equivalent_to(other)
Test a concrete ComplexPattern for equality with another.

Use of this method on non-concrete ComplexPatterns was previously allowed, but is now deprecated.

matches(other)
Compare another ComplexPattern against this one

Parameters

other: ComplexPattern A ComplexPattern to match against self

Returns

bool True if other matches self; False otherwise.

class pysb.core.Component(name, _export=True)
The base class for all the named things contained within a model.

Parameters

name [string] Name of the component. Must be unique within the containing model.

Attributes

name [string] Name of the component.

model [weakref(Model)] Containing model.
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rename(new_name)
Change component’s name.

This is typically only needed when deriving one model from another and it would be desirable to change a
component’s name in the derived model.

exception pysb.core.ComponentDuplicateNameError
A component was added with the same name as an existing one.

class pysb.core.ComponentSet(iterable=None)
An add-and-read-only container for storing model Components.

It behaves mostly like an ordered set, but components can also be retrieved by name or index by using the []
operator (like a combination of a dict and a list). Components cannot be removed or replaced, but they can be
renamed. Iteration returns the component objects.

Parameters

iterable [iterable of Components, optional] Initial contents of the set.

filter(filter_predicate)
Filter a ComponentSet using a predicate or set of predicates

Parameters

filter_predicate: callable or pysb.pattern.FilterPredicate A predicate (condition) to test
each Component in the ComponentSet against. This can either be an anonymous “lambda”
function or a subclass of pysb.pattern.FilterPredicate. For lambda functions, the argument
is a single Component and return value is a boolean indicating a match or not.

Returns

ComponentSet A ComponentSet containing Components matching all of the supplied fil-
ters

Examples

>>> from pysb.examples.earm_1_0 import model
>>> from pysb.pattern import Name, Pattern, Module, Function
>>> m = model.monomers

Find parameters exactly equal to 10000:

>>> model.parameters.filter(lambda c: c.value == 1e4) #
→˓doctest:+NORMALIZE_WHITESPACE
ComponentSet([
Parameter('pC3_0', 10000.0),
Parameter('pC6_0', 10000.0),

])

Find rules with a forward rate < 1e-8, using a custom function:

>>> model.rules.filter(lambda c: c.rate_forward.value < 1e-8) #
→˓doctest: +NORMALIZE_WHITESPACE
ComponentSet([
Rule('bind_pC3_Apop', Apop(b=None) + pC3(b=None) | Apop(b=1) %

pC3(b=1), kf25, kr25),
])
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We can also use some built in predicates for more complex matching scenarios, including combining
multiple predicates.

Find rules with a name beginning with “inhibit” that contain cSmac:

>>> model.rules.filter(Name('^inhibit') & Pattern(m.cSmac())) #
→˓doctest: +NORMALIZE_WHITESPACE
ComponentSet([
Rule('inhibit_cSmac_by_XIAP', cSmac(b=None) + XIAP(b=None) |

cSmac(b=1) % XIAP(b=1), kf28, kr28),
])

Find rules with any form of Bax (i.e. Bax, aBax, mBax):

>>> model.rules.filter(Pattern(m.Bax) | Pattern(m.aBax) |
→˓Pattern(m.MBax)) # doctest: +NORMALIZE_WHITESPACE
ComponentSet([
Rule('bind_Bax_tBid', tBid(b=None) + Bax(b=None) |

tBid(b=1) % Bax(b=1), kf12, kr12),
Rule('produce_aBax_via_tBid', tBid(b=1) % Bax(b=1) >>

tBid(b=None) + aBax(b=None), kc12),
Rule('transloc_MBax_aBax', aBax(b=None) |

MBax(b=None), kf13, kr13),
Rule('inhibit_MBax_by_Bcl2', MBax(b=None) + Bcl2(b=None) |

MBax(b=1) % Bcl2(b=1), kf14, kr14),
Rule('dimerize_MBax_to_Bax2', MBax(b=None) + MBax(b=None) |

Bax2(b=None), kf15, kr15),
])

Count the number of parameter that don’t start with kf (note the ~ negation operator):

>>> len(model.parameters.filter(~Name('^kf')))
60

Get components not defined in this module (file). In this case, everything is defined in one file, but for
multi-file models this becomes more useful:

>>> model.components.filter(~Module('^pysb.examples.earm_1_0$'))
ComponentSet([
])

Count the number of rules defined in the ‘catalyze’ function:

>>> len(model.rules.filter(Function('^catalyze$')))
24

get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

rename(c, new_name)
Change the name of component c to new_name.

values()→ an object providing a view on D’s values
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exception pysb.core.ConstantExpressionError
Expected a constant Expression but got something else.

exception pysb.core.DanglingBondError

exception pysb.core.DuplicateMonomerError

exception pysb.core.DuplicateSiteError

class pysb.core.Expression(name, expr, _export=True)
Model component representing a symbolic expression of other variables.

Parameters

expr [sympy.Expr] Symbolic expression.

Attributes

expr [sympy.Expr] See Parameters.

expand_expr(expand_observables=False)
Return expr rewritten in terms of terminal symbols only.

is_constant_expression()
Return True if all terminal symbols are Parameters or numbers.

exception pysb.core.ExpressionError
Expected an Expression but got something else.

class pysb.core.Initial(pattern, value, fixed=False, _export=True)
An initial condition for a species.

An initial condition is made up of a species, its amount or concentration, and whether it is to be held fixed during
a simulation.

Species patterns must satisfy all of the following: * Able to be cast as a ComplexPattern * Concrete (see Com-
plexPattern.is_concrete) * Distinct from any existing initial condition pattern * match_once is False (nonsensical
in this context)

Parameters

pattern [ComplexPattern] A concrete pattern defining the species to initialize.

value [Parameter or Expression Amount of the species the model will start] with. If an Expres-
sion is used, it must evaluate to a constant (can’t reference any Observables).

fixed [bool] Whether or not the species should be held fixed (never consumed).

Attributes

Identical to Parameters (see above).

class pysb.core.InitialConditionsView(model)
Compatibility shim for the Model.initial_conditions property.

exception pysb.core.InvalidComplexPatternException
Expression can not be cast as a ComplexPattern.

exception pysb.core.InvalidComponentNameError(name)
Inappropriate component name.

exception pysb.core.InvalidInitialConditionError
Invalid initial condition pattern.

exception pysb.core.InvalidReactionPatternException
Expression can not be cast as a ReactionPattern.
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exception pysb.core.InvalidReversibleSynthesisDegradationRule
Synthesis or degradation rule defined as reversible.

pysb.core.MatchOnce(pattern)
Make a ComplexPattern match-once.

MatchOnce adjusts reaction rate multiplicity by only counting a pattern match once per species, even if it
matches within that species multiple times.

For example, if one were to have molecules of A degrading with a specified rate:

>>> Rule('A_deg', A() >> None, kdeg) # doctest: +SKIP

In the situation where multiple molecules of A() were present in a species (e.g. A(a=1) % A(a=1)), the
above A_deg rule would have multiplicity equal to the number of occurences of A() in the degraded species.
Thus, A(a=1) % A(a=1) would degrade twice as fast as A(a=None) under the above rule. If this behavior
is not desired, the multiplicity can be fixed at one using the MatchOnce keyword:

>>> Rule('A_deg', MatchOnce(A()) >> None, kdeg) # doctest: +SKIP

class pysb.core.Model(name=None, base=None, _export=True)
A rule-based model containing monomers, rules, compartments and parameters.

Parameters

name [string, optional] Name of the model. If not specified, will be set to the name of the file
from which the constructor was called (with the .py extension stripped).

base [Model, optional] If specified, the model will begin as a copy of base. This can be used to
achieve a simple sort of model extension and enhancement.

Attributes

name [string] Name of the model. See Parameter section above.

base [Model or None] See Parameter section above.

monomers, compartments, parameters, rules, observables [ComponentSet] The Compo-
nent objects which make up the model.

initials [list of Initial] Specifies which species are present in the model’s starting state (t=0) and
how much there is of each one.

initial_conditions [list of tuple of (ComplexPattern, Parameter)] The old representation of ini-
tial conditions, deprecated in favor of initials.

species [list of ComplexPattern] List of all complexes which can be produced by the model,
starting from the initial conditions and successively applying the rules. Each ComplexPat-
tern is concrete.

reactions [list of dict] Structures describing each possible unidirectional reaction that can be
produced by the model. Each structure stores the name of the rule that generated the re-
action (‘rule’), the mathematical expression for the rate of the reaction (‘rate’), tuples of
species indexes for the reactants and products (‘reactants’, ‘products’), and a bool indicat-
ing whether the reaction is the reverse component of a bidirectional reaction (‘reverse’).

reactions_bidirectional [list of dict] Similar to reactions but with only one entry for each bidi-
rectional reaction. The fields are identical except ‘reverse’ is replaced by ‘reversible’, a bool
indicating whether the reaction is reversible. The ‘rate’ is the forward rate minus the reverse
rate.

annotations [list of Annotation] Structured annotations of model components. See the Anno-
tation class for details.
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add_annotation(annotation)
Add an annotation to the model.

add_component(other)
Add a component to the model.

all_component_sets()
Return a list of all ComponentSet objects.

all_components()
Return a ComponentSet containing all components in the model.

enable_synth_deg()
Add components needed to support synthesis and degradation rules.

expressions_constant(include_derived=False)
Return a ComponentSet of constant expressions.

expressions_dynamic(include_local=True, include_derived=False)
Return a ComponentSet of non-constant expressions.

get_annotations(subject)
Return all annotations for the given subject.

get_species_index(complex_pattern)
Return the index of a species.

Parameters

complex_pattern [ComplexPattern] A concrete pattern specifying the species to find.

has_synth_deg()
Return true if model uses synthesis or degradation reactions.

initial(pattern, value, fixed=False)
Add an initial condition.

This method is deprecated. Instead, create an Initial object and pass it to add_initial.

modules
Return the set of Python modules where Components are defined

Returns

list List of module names where model Components are defined

Examples

>>> from pysb.examples.earm_1_0 import model
>>> 'pysb.examples.earm_1_0' in model.modules
True

odes
Return sympy Expressions for the time derivative of each species.

parameters_all()
Return a ComponentSet of all parameters and derived parameters.

parameters_compartments()
Return a ComponentSet of compartment size parameters.

parameters_expressions()
Return a ComponentSet of the parameters used in expressions.

4.1. PySB core (pysb.core) 35



pysb Documentation, Release 0+untagged.134.gd8a008d.dirty

parameters_initial_conditions()
Return a ComponentSet of initial condition parameters.

parameters_rules()
Return a ComponentSet of the parameters used in rules.

parameters_unused()
Return a ComponentSet of unused parameters.

reload()
Reload a model after its source files have been edited.

This method does not yet reload the model contents in-place, rather it returns a new model object. Thus
the correct usage is model = model.reload().

If the model script imports any modules, these will not be reloaded. Use python’s reload() function to
reload them.

reset_equations()
Clear out fields generated by bng.generate_equations or the like.

stoichiometry_matrix
Return the stoichiometry matrix for the reaction network.

update_initial_condition_pattern(before_pattern, after_pattern)
Update the pattern associated with an initial condition.

Leaves the Parameter object associated with the initial condition unchanged while modifying the pattern
associated with that condition. For example this is useful for changing the state of a site on a monomer or
complex associated with an initial condition without having to create an independent initial condition, and
parameter, associated with that alternative state.

Parameters

before_pattern [ComplexPattern] The concrete pattern specifying the (already existing) ini-
tial condition. If the model does not contain an initial condition for the pattern, a ValueEr-
ror is raised.

after_pattern [ComplexPattern] The concrete pattern specifying the new pattern to use to
replace before_pattern.

exception pysb.core.ModelExistsWarning
A second model was declared in a module that already contains one.

exception pysb.core.ModelNotDefinedError
SelfExporter method was called before a model was defined.

class pysb.core.Monomer(name, sites=None, site_states=None, _export=True)
Model component representing a protein or other molecule.

Parameters

sites [list of strings, optional] Names of the sites.

site_states [dict of string => string, optional] Allowable states for sites. Keys are sites and
values are lists of states. Sites which only take part in bond formation and never take on a
state may be omitted.

Notes

A Monomer instance may be “called” like a function to produce a MonomerPattern, as syntactic sugar to ap-
proximate rule-based modeling language syntax. It is typically called with keyword arguments where the arg
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names are sites and values are site conditions such as bond numbers or states (see the Notes section of the
MonomerPattern documentation for details). To help in situations where kwargs are unwieldy (for example
if a site name is computed dynamically or stored in a variable) a dict following the same layout as the kwargs
may be passed as the first and only positional argument instead.

Site names and state values must start with a letter, or one or more underscores followed by a letter. Any
remaining characters must be alphanumeric or underscores.

Attributes

Identical to Parameters (see above).

class pysb.core.MonomerPattern(monomer, site_conditions, compartment)
A pattern which matches instances of a given monomer.

Parameters

monomer [Monomer] The monomer to match.

site_conditions [dict] The desired state of the monomer’s sites. Keys are site names and values
are described below in Notes.

compartment [Compartment or None] The desired compartment where the monomer should
exist. None means “don’t-care”.

Notes

The acceptable values in the site_conditions dict are as follows:

• None : no bond

• str : state

• int : a bond (to a site with the same number in a ComplexPattern)

• list of int : multi-bond (not valid in Kappa)

• ANY : “any” bond (bound to something, but don’t care what)

• WILD : “wildcard” bond (bound or not bound)

• tuple of (str, int) : state with specified bond

• tuple of (str, WILD) : state with wildcard bond

• tuple of (str, ANY) : state with any bond

• MultiState : duplicate sites

If a site is not listed in site_conditions then the pattern will match any state for that site, i.e. “don’t write, don’t
care”.

Attributes

Identical to Parameters (see above).

is_concrete()
Return a bool indicating whether the pattern is ‘concrete’.

‘Concrete’ means the pattern satisfies ALL of the following:

1. All sites have specified conditions

2. If the model uses compartments, the compartment is specified.
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is_site_concrete()
Return a bool indicating whether the pattern is ‘site-concrete’.

‘Site-concrete’ means all sites have specified conditions.

class pysb.core.MultiState(*args)
MultiState for a Monomer (also known as duplicate sites)

MultiStates are duplicate copies of a site which each have the same name and semantics. In BioNetGen, these
are known as duplicate sites. MultiStates are not supported by Kappa.

When declared, a MultiState instance is not connected to any Monomer or site, so full validation is deferred
until it is used as part of a MonomerPattern or ComplexPattern.

Examples

Define a Monomer “A” with MultiState “a”, which has two copies, and Monomer “B” with MultiState “b”,
which also has two copies but can take state values “u” and “p”:

>>> Model() # doctest:+ELLIPSIS
<Model '_interactive_' (monomers: 0, ...
>>> Monomer('A', ['a', 'a']) # BNG: A(a, a)
Monomer('A', ['a', 'a'])
>>> Monomer('B', ['b', 'b'], {'b': ['u', 'p']}) # BNG: B(b~u~p, b~u~p)
Monomer('B', ['b', 'b'], {'b': ['u', 'p']})

To specify MultiStates, use the MultiState class. Here are some valid examples of MultiState patterns, with their
BioNetGen equivalents:

>>> A(a=MultiState(1, 2)) # BNG: A(a!1,a!2)
A(a=MultiState(1, 2))
>>> B(b=MultiState('u', 'p')) # BNG: A(A~u,A~p)
B(b=MultiState('u', 'p'))
>>> A(a=MultiState(1, 2)) % B(b=MultiState(('u', 1), 2)) # BNG: A(a!1, a!2).B(b~
→˓u!1, b~2)
A(a=MultiState(1, 2)) % B(b=MultiState(('u', 1), 2))

class pysb.core.Observable(name, reaction_pattern, match=’molecules’, _export=True)
Model component representing a linear combination of species.

Observables are useful in correlating model simulation results with experimental measurements. For example,
an observable for “A()” will report on the total number of copies of Monomer A, regardless of what it’s bound
to or the state of its sites. “A(y=’P’)” would report on all instances of A with site ‘y’ in state ‘P’.

Parameters

reaction_pattern [ReactionPattern] The list of ComplexPatterns to match.

match [‘species’ or ‘molecules’] Whether to match entire species (‘species’) or individual frag-
ments (‘molecules’). Default is ‘molecules’.

Notes

ReactionPattern is used here as a container for a list of ComplexPatterns, solely so users could utilize the Com-
plexPattern ‘+’ operator overload as syntactic sugar. There are no actual “reaction” semantics in this context.

Attributes

reaction_pattern [ReactionPattern] See Parameters.
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match [‘species’ or ‘molecules’] See Parameters.

species [list of integers] List of species indexes for species matching the pattern.

coefficients [list of integers] List of coefficients by which each species amount is to be multi-
plied to correct for multiple pattern matches within a species.

expand_obs()
Expand observables in terms of species and coefficients

class pysb.core.OdeView(model)
Compatibility shim for the Model.odes property.

class pysb.core.Parameter(name, value=0.0, _export=True, **kwargs)
Model component representing a named constant floating point number.

Parameters are used as reaction rate constants, compartment volumes and initial (boundary) conditions for
species.

Parameters

value [number, optional] The numerical value of the parameter. Defaults to 0.0 if not specified.
The provided value is converted to a float before being stored, so any value that cannot be
coerced to a float will trigger an exception.

nonnegative [bool, optional] Sets the assumption whether this parameter is nonnegative (>=0).
Affects simplifications of expressions that involve this parameter. By default, parameters
are assumed to be non-negative.

integer [bool, optional] Sets the assumption whether this parameter takes integer values, which
affects simplifications of expressions that involve this parameter. By default, parameters are
not assumed to take integer values.

Attributes

value (see Parameters above).

class pysb.core.ReactionPattern(complex_patterns)
A pattern for the entire product or reactant side of a rule.

Essentially a thin wrapper around a list of ComplexPatterns. In BNG terms, a list of complex patterns combined
with the ‘+’ operator.

Parameters

complex_patterns [list of ComplexPatterns] ComplexPatterns that make up the reaction pat-
tern.

Attributes

Identical to Parameters (see above).

matches(other)
Match the ‘other’ ReactionPattern against this one

See pysb.pattern.match_reaction_pattern() for details

exception pysb.core.RedundantSiteConditionsError
Both conditions dict and kwargs both passed to create pattern.

exception pysb.core.ReusedBondError

class pysb.core.Rule(name, rule_expression, rate_forward, rate_reverse=None,
delete_molecules=False, move_connected=False, _export=True)

Model component representing a reaction rule.
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Parameters

rule_expression [RuleExpression] RuleExpression containing the essence of the rule (reac-
tants, products, reversibility).

rate_forward [Union[Parameter,Expression]] Forward reaction rate constant.

rate_reverse [Union[Parameter,Expression], optional] Reverse reaction rate constant (only re-
quired for reversible rules).

delete_molecules [bool, optional] If True, deleting a Monomer from a species is allowed to
fragment the species into multiple pieces (if the deleted Monomer was the sole link between
those pieces). If False (default) then fragmentation is disallowed and the rule will not match
a reactant species if applying the rule would fragment a species.

move_connected [bool, optional] If True, a rule that transports a Monomer between compart-
ments will co-transport anything connected to that Monomer by a path in the same compart-
ment. If False (default), connected Monomers will remain where they were.

Attributes

Identical to Parameters (see above), plus the component elements of

‘rule_expression‘: reactant_pattern, product_pattern and is_reversible.

is_deg()
Return a bool indicating whether this is a degradation rule.

is_synth()
Return a bool indicating whether this is a synthesis rule.

class pysb.core.RuleExpression(reactant_pattern, product_pattern, is_reversible)
A container for the reactant and product patterns of a rule expression.

Contains one ReactionPattern for each of reactants and products, and a bool indicating reversibility. This is a
temporary object used to implement syntactic sugar through operator overloading. The Rule constructor takes
an instance of this class as its first argument, but simply extracts its fields and discards the object itself.

Parameters

reactant_pattern, product_pattern [ReactionPattern] The reactants and products of the rule.

is_reversible [bool] If True, the reaction is reversible. If False, it’s irreversible.

Attributes

Identical to Parameters (see above).

class pysb.core.SelfExporter
Make model components appear in the calling module’s namespace.

This class is for pysb internal use only. Do not construct any instances.

static add_initial(initial)
Add an Initial to the default model.

static cleanup()
Delete previously exported symbols.

static export(obj)
Export an object by name and add it to the default model.

static rename(obj, new_name)
Rename a previously exported symbol
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exception pysb.core.SymbolExistsWarning
A component declaration or rename overwrote an existing symbol.

class pysb.core.Tag(name, _export=True)
Tag for labelling MonomerPatterns and ComplexPatterns

exception pysb.core.TagAlreadySpecifiedError

exception pysb.core.UnknownSiteError

class pysb.core.WILD
Site may be bound or unbound.

Use WILD as part of a (state, WILD) tuple in a MonomerPattern site_conditions dict to indicate that a site must
have the given state, irrespective of the presence or absence of a bond. (Specifying only the state implies there
must not be a bond). A bare WILD in a site_conditions dict is also permissible, but as this has the same meaning
as the much simpler option of leaving the given site out of the dict entirely, this usage is deprecated.

Equivalent to the “?” bond modifier in BNG.

pysb.core.as_complex_pattern(v)
Internal helper to ‘upgrade’ a MonomerPattern to a ComplexPattern.

pysb.core.as_reaction_pattern(v)
Internal helper to ‘upgrade’ a Complex- or MonomerPattern or None to a complete ReactionPattern.

pysb.core.build_rule_expression(reactant, product, is_reversible)
Internal helper for operators which return a RuleExpression.

pysb.core.extract_site_conditions(conditions=None, **kwargs)
Parse MonomerPattern/ComplexPattern site conditions.

pysb.core.is_state_bond_tuple(state)
Check the argument is a (state, bond) tuple for a Mononer site

pysb.core.validate_const_expr(obj, description)
Raises an exception if the argument is not a constant expression.

pysb.core.validate_expr(obj, description)
Raises an exception if the argument is not an expression.

4.2 ODE integrators (pysb.integrate)

class pysb.integrate.Solver(model, tspan, use_analytic_jacobian=False, integrator=’vode’,
cleanup=True, verbose=False, **integrator_options)

An interface for numeric integration of models.

Parameters

model [pysb.Model] Model to integrate.

tspan [vector-like] Time values over which to integrate. The first and last values define the time
range, and the returned trajectories will be sampled at every value.

use_analytic_jacobian [boolean, optional] Whether to provide the solver a Jacobian matrix
derived analytically from the model ODEs. Defaults to False. If False, the integrator may
approximate the Jacobian by finite-differences calculations when necessary (depending on
the integrator and settings).

integrator [string, optional (default: ‘vode’)] Name of the integrator to use, taken from the list
of integrators known to scipy.integrate.ode.
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cleanup [bool, optional] If True (default), delete the temporary files after the simulation is
finished. If False, leave them in place. Useful for debugging.

verbose [bool, optional (default: False)] Verbose output

integrator_options Additional parameters for the integrator.

Notes

The expensive step of generating the code for the right-hand side of the model’s ODEs is performed during
initialization. If you need to integrate the same model repeatedly with different parameters then you should
build a single Solver object and then call its run method as needed.

Attributes

model [pysb.Model] Model passed to the constructor

tspan [vector-like] Time values passed to the constructor.

y [numpy.ndarray] Species trajectories. Dimensionality is (len(tspan), len(model.
species)).

yobs [numpy.ndarray with record-style data-type] Observable trajectories. Length is
len(tspan) and record names follow model.observables names.

yobs_view [numpy.ndarray] An array view (sharing the same data buffer) on yobs. Dimen-
sionality is (len(tspan), len(model.observables)).

yexpr [numpy.ndarray with record-style data-type] Expression trajectories. Length is
len(tspan) and record names follow model.expressions_dynamic() names.

yexpr_view [numpy.ndarray] An array view (sharing the same data buffer) on yexpr. Dimen-
sionality is (len(tspan), len(model.expressions_dynamic())).

integrator [scipy.integrate.ode] Integrator object.

run(param_values=None, y0=None)
Perform an integration.

Returns nothing; access the Solver object’s y, yobs, or yobs_view attributes to retrieve the results.

Parameters

param_values [vector-like or dictionary, optional] Values to use for every parameter in the
model. Ordering is determined by the order of model.parameters. If passed as a dictionary,
keys must be parameter names. If not specified, parameter values will be taken directly
from model.parameters.

y0 [vector-like, optional] Values to use for the initial condition of all species. Ordering is
determined by the order of model.species. If not specified, initial conditions will be taken
from model.initials (with initial condition parameter values taken from param_values if
specified).

pysb.integrate.odesolve(model, tspan, param_values=None, y0=None, integrator=’vode’,
cleanup=True, verbose=False, **integrator_options)

Integrate a model’s ODEs over a given timespan.

This is a simple function-based interface to integrating (a.k.a. solving or simulating) a model. If you need to
integrate a model repeatedly with different parameter values or initial conditions (as in parameter estimation),
using the Solver class directly will provide much better performance.

Parameters
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model [pysb.Model] Model to integrate.

tspan [vector-like] Time values over which to integrate. The first and last values define the time
range, and the returned trajectories will be sampled at every value.

param_values [vector-like, optional] Values to use for every parameter in the model. Ordering
is determined by the order of model.parameters. If not specified, parameter values will be
taken directly from model.parameters.

y0 [vector-like, optional] Values to use for the initial condition of all species. Ordering is deter-
mined by the order of model.species. If not specified, initial conditions will be taken from
model.initials (with initial condition parameter values taken from param_values if speci-
fied).

integrator [string, optional] Name of the integrator to use, taken from the list of integrators
known to scipy.integrate.ode.

cleanup [bool, optional] Remove temporary files after completion if True. Set to False for
debugging purposes.

verbose [bool, optionsal] Increase verbosity of simulator output.

integrator_options : Additional parameters for the integrator.

Returns

yfull [record array] The trajectories calculated by the integration. The first dimension is time
and its length is identical to that of tspan. The second dimension is species/observables and
its length is the sum of the lengths of model.species and model.observables. The dtype of
the array specifies field names: ‘__s0’, ‘__s1’, etc. for the species and observable names for
the observables. See Notes below for further explanation and caveats.

Notes

This function was the first implementation of integration support and accordingly it has a few warts:

• It performs expensive code generation every time it is called.

• The returned array, with its record-style data-type, allows convenient selection of individual columns by
their field names, but does not permit slice ranges or indexing by integers for columns. If you only need
access to your model’s observables this is usually not a problem, but sometimes it’s more convenient to
have a “regular” array. See Examples below for code to do this.

The actual integration code has since been moved to the Solver class and split up such that the code generation is
only performed on initialization. The model may then be integrated repeatedly with different parameter values
or initial conditions with much better performance. Additionally, Solver makes the species trajectories available
as a simple array and only uses the record array for the observables where it makes sense.

This function now simply serves as a wrapper for creating a Solver object, calling its run method, and building
the record array to return.

Examples

Simulate a model and display the results for an observable:

>>> from pysb.examples.robertson import model
>>> from numpy import linspace
>>> numpy.set_printoptions(precision=4)
>>> yfull = odesolve(model, linspace(0, 40, 10))

(continues on next page)
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(continued from previous page)

>>> print(yfull['A_total']) #doctest: +NORMALIZE_WHITESPACE
[1. 0.899 0.8506 0.8179 0.793 0.7728 0.7557 0.7408 0.7277
0.7158]

Obtain a view on a returned record array which uses an atomic data-type and integer indexing (note that the
view’s data buffer is shared with the original array so there is no extra memory cost):

>>> yfull.shape == (10, )
True
>>> print(yfull.dtype) #doctest: +NORMALIZE_WHITESPACE
[('__s0', '<f8'), ('__s1', '<f8'), ('__s2', '<f8'), ('A_total', '<f8'),
('B_total', '<f8'), ('C_total', '<f8')]
>>> print(yfull[0:4, 1:3]) #doctest: +ELLIPSIS
Traceback (most recent call last):
...

IndexError: too many indices...
>>> yarray = yfull.view(float).reshape(len(yfull), -1)
>>> yarray.shape == (10, 6)
True
>>> print(yarray.dtype)
float64
>>> print(yarray[0:4, 1:3]) #doctest: +NORMALIZE_WHITESPACE
[[0.0000e+00 0.0000e+00]
[2.1672e-05 1.0093e-01]
[1.6980e-05 1.4943e-01]
[1.4502e-05 1.8209e-01]]

4.3 Simulation tools (pysb.simulator)

class pysb.simulator.BngSimulator(model, tspan=None, initials=None, param_values=None,
cleanup=True, verbose=False)

Simulate a model using BioNetGen

run(tspan=None, initials=None, param_values=None, n_runs=1, method=’ssa’, output_dir=None, out-
put_file_basename=None, cleanup=None, population_maps=None, **additional_args)
Simulate a model using BioNetGen

Parameters

tspan: vector-like time span of simulation

initials: vector-like, optional initial conditions of model

param_values [vector-like or dictionary, optional] Values to use for every parameter in the
model. Ordering is determined by the order of model.parameters. If not specified, param-
eter values will be taken directly from model.parameters.

n_runs: int number of simulations to run

method [str] Type of simulation to run. Must be one of:

• ‘ssa’ - Stochastic Simulation Algorithm (direct method with propensity sorting)

• ‘nf’ - Stochastic network free simulation with NFsim. Performs Hybrid Parti-
cle/Population simulation if population_maps argument is supplied

• ‘pla’ - Partioned-leaping algorithm (variant of tau-leaping algorithm)
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• ‘ode’ - ODE simulation (Sundials CVODE algorithm)

output_dir [string, optional] Location for temporary files generated by BNG. If None (the
default), uses a temporary directory provided by the system. A temporary directory with a
random name is created within the supplied location.

output_file_basename [string, optional] This argument is used as a prefix for the temporary
BNG output directory, rather than the individual files.

cleanup [bool, optional] If True (default), delete the temporary files after the simulation is
finished. If False, leave them in place (Useful for debugging). The default value, None,
means to use the value specified in __init__().

population_maps: list of PopulationMap List of PopulationMap objects for hybrid
particle/population modeling. Only used when method=’nf’.

additional_args: kwargs, optional Additional arguments to pass to BioNetGen

Examples

Simulate a model using network free simulation (NFsim):

>>> from pysb.examples import robertson
>>> from pysb.simulator.bng import BngSimulator
>>> model = robertson.model
>>> sim = BngSimulator(model, tspan=np.linspace(0, 1))
>>> x = sim.run(n_runs=1, method='nf')

class pysb.simulator.CupSodaSimulator(model, tspan=None, initials=None,
param_values=None, verbose=False, **kwargs)

An interface for running cupSODA, a CUDA implementation of LSODA.

cupSODA is a graphics processing unit (GPU)-based implementation of the LSODA simulation algorithm (see
references). It requires an NVIDIA GPU card with support for the CUDA framework version 7 or above. Further
details of cupSODA and software can be found on github: https://github.com/aresio/cupSODA

The simplest way to install cupSODA is to use a pre-compiled version, which can be downloaded from here:
https://github.com/aresio/cupSODA/releases

Parameters

model [pysb.Model] Model to integrate.

tspan [vector-like, optional] Time values at which the integrations are sampled. The first and
last values define the time range.

initials [list-like, optional] Initial species concentrations for all simulations. Dimensions are
N_SIMS x number of species.

param_values [list-like, optional] Parameters for all simulations. Dimensions are N_SIMS x
number of parameters.

verbose [bool or int, optional] Verbosity level, see pysb.simulator.base.Simulator
for further details.

**kwargs: dict, optional Extra keyword arguments, including:

• gpu: Index of GPU to run on (default: 0)

• vol: System volume; required if model encoded in extrinsic (number) units (default:
None)

• obs_species_only: Only output species contained in observables (default: True)
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• cleanup: Delete all temporary files after the simulation is finished. Includes both
BioNetGen and cupSODA files. Useful for debugging (default: True)

• prefix: Prefix for the temporary directory containing cupSODA input and output files
(default: model name)

• base_dir: Directory in which temporary directory with cupSODA input and output
files are placed (default: system directory determined by tempfile.mkdtemp)

• integrator: Name of the integrator to use; see default_integrator_options (default:
‘cupsoda’)

• integrator_options: A dictionary of keyword arguments to supply to the integra-
tor; see default_integrator_options.

Notes

1. If vol is defined, species amounts and rate constants are assumed to be in number units and are automati-
cally converted to concentration units before generating the cupSODA input files. The species concentra-
tions returned by cupSODA are converted back to number units during loading.

2. If obs_species_only is True, only the species contained within observables are output by cupSODA. All
other concentrations are set to ‘nan’.

References
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Attributes

model [pysb.Model] Model passed to the constructor.

tspan [numpy.ndarray] Time values passed to the constructor.

initials [numpy.ndarray] Initial species concentrations for all simulations. Dimensions are num-
ber of simulations x number of species.

param_values [numpy.ndarray] Parameters for all simulations. Dimensions are number of sim-
ulations x number of parameters.

verbose: bool or int Verbosity setting. See the base class pysb.simulator.base.
Simulator for further details.

gpu [int or list] Index of GPU being run on, or a list of integers to use multiple GPUs. Simula-
tions will be split equally among the of GPUs.

outdir [str] Directory where cupSODA output files are placed. Input files are also placed here.

opts: dict Dictionary of options for the integrator, which can include the following:

• vol (float or None): System volume

• n_blocks (int or None): Number of GPU blocks used by the simulator

• atol (float): Absolute integrator tolerance

46 Chapter 4. PySB Modules Reference



pysb Documentation, Release 0+untagged.134.gd8a008d.dirty

• rtol (float): Relative integrator tolerance

• chunksize (int or None): The maximum number of simulations to run per GPU at one
time. Set this option if your GPU is running out of memory.

• memory_usage (‘global’, ‘shared’, or ‘sharedconstant’): The type of GPU memory to use

• max_steps (int): The maximum number of internal integrator iterations (equivalent to
LSODA’s mxstep)

integrator [str] Name of the integrator in use (only “cupsoda” is supported).

run(tspan=None, initials=None, param_values=None)
Perform a set of integrations.

Returns a SimulationResult object.

Parameters

tspan [list-like, optional] Time values at which the integrations are sampled. The first and
last values define the time range.

initials [list-like, optional] Initial species concentrations for all simulations. Dimensions are
number of simulation x number of species.

param_values [list-like, optional] Parameters for all simulations. Dimensions are number
of simulations x number of parameters.

Returns

A SimulationResult object

Notes

1. An exception is thrown if tspan is not defined in either __init__‘or ‘run.

2. If neither initials nor param_values are defined in either __init__ or run a single simulation is run
with the initial concentrations and parameter values defined in the model.

class pysb.simulator.ScipyOdeSimulator(model, tspan=None, initials=None,
param_values=None, verbose=False, **kwargs)

Simulate a model using SciPy ODE integration

Uses scipy.integrate.odeint() for the lsoda integrator, scipy.integrate.ode() for all other
integrators.

Warning: The interface for this class is considered experimental and may change without warning as PySB
is updated.

Parameters

model [pysb.Model] Model to simulate.

tspan [vector-like, optional] Time values over which to simulate. The first and last values define
the time range. Returned trajectories are sampled at every value unless the simulation is
interrupted for some reason, e.g., due to satisfaction of a logical stopping criterion (see
‘tout’ below).
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initials [vector-like or dict, optional] Values to use for the initial condition of all species. Order-
ing is determined by the order of model.species. If not specified, initial conditions will be
taken from model.initials (with initial condition parameter values taken from param_values
if specified).

param_values [vector-like or dict, optional] Values to use for every parameter in the model.
Ordering is determined by the order of model.parameters. If passed as a dictionary, keys
must be parameter names. If not specified, parameter values will be taken directly from
model.parameters.

verbose [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the
logging levels and constants from Python’s logging module for interpretation of integer
values. False is equal to the PySB default level (currently WARNING), True is equal to
DEBUG.

**kwargs [dict] Extra keyword arguments, including:

• integrator: Choice of integrator, including vode (default), zvode, lsoda,
dopri5 and dop853. See scipy.integrate.ode() for further information.

• integrator_options: A dictionary of keyword arguments to supply to the integra-
tor. See scipy.integrate.ode().

• compiler: Choice of compiler for ODE system: cython, or python. Leave unspec-
ified or equal to None for auto-select (tries cython, then python). Cython compiles the
equation system into C code. Python is the slowest but most compatible.

• cleanup: Boolean, whether to delete temporary files.

Notes

If tspan is not defined, it may be defined in the call to the run method.

Examples

Simulate a model and display the results for an observable:

>>> from pysb.examples.robertson import model
>>> import numpy as np
>>> np.set_printoptions(precision=4)
>>> sim = ScipyOdeSimulator(model, tspan=np.linspace(0, 40, 10))
>>> simulation_result = sim.run()
>>> print(simulation_result.observables['A_total']) #doctest: +NORMALIZE_
→˓WHITESPACE
[1. 0.899 0.8506 0.8179 0.793 0.7728 0.7557 0.7408 0.7277
0.7158]

For further information on retrieving trajectories (species, observables, expressions over time) from the
simulation_result object returned by run(), see the examples under the SimulationResult class.

run(tspan=None, initials=None, param_values=None, num_processors=1)
Run a simulation and returns the result (trajectories)

Note: In early versions of the Simulator class, tspan, initials and param_values supplied to
this method persisted to future run() calls. This is no longer the case.

48 Chapter 4. PySB Modules Reference



pysb Documentation, Release 0+untagged.134.gd8a008d.dirty

Parameters

tspan

initials

param_values See parameter definitions in ScipyOdeSimulator.

num_processors [int] Number of processes to use (default: 1). Set to a larger number (e.g.
the number of CPU cores available) for parallel execution of simulations. This is only
useful when simulating with more than one set of initial conditions and/or parameters.

Returns

A SimulationResult object

class pysb.simulator.StochKitSimulator(model, tspan=None, initials=None,
param_values=None, verbose=False, **kwargs)

Interface to the StochKit 2 stochastic simulation toolkit

StochKit can be installed from GitHub: https://github.com/stochss/stochkit

This class is inspired by the gillespy <https://github.com/JohnAbel/gillespy> library, but has been optimised for
use with PySB.

Warning: The interface for this class is considered experimental and may change without warning as PySB
is updated.

Parameters

model [pysb.Model] Model to simulate.

tspan [vector-like, optional] Time values over which to simulate. The first and last values define
the time range. Returned trajectories are sampled at every value unless the simulation is
interrupted for some reason, e.g., due to satisfaction of a logical stopping criterion (see
‘tout’ below).

initials [vector-like or dict, optional] Values to use for the initial condition of all species. Order-
ing is determined by the order of model.species. If not specified, initial conditions will be
taken from model.initials (with initial condition parameter values taken from param_values
if specified).

param_values [vector-like or dict, optional] Values to use for every parameter in the model.
Ordering is determined by the order of model.parameters. If passed as a dictionary, keys
must be parameter names. If not specified, parameter values will be taken directly from
model.parameters.

verbose [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the
logging levels and constants from Python’s logging module for interpretation of integer
values. False is equal to the PySB default level (currently WARNING), True is equal to
DEBUG.

**kwargs [dict] Extra keyword arguments, including:

• cleanup: Boolean, delete directory after completion if True

Examples

Simulate a model and display the results for an observable:
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>>> from pysb.examples.robertson import model
>>> import numpy as np
>>> np.set_printoptions(precision=4)
>>> sim = StochKitSimulator(model, tspan=np.linspace(0, 10, 5))

Here we supply a “seed” to the random number generator for deterministic results, but for most purposes it is
recommended to leave this blank.

>>> simulation_result = sim.run(n_runs=2, seed=123456)

A_total trajectory for first run

>>> print(simulation_result.observables[0]['A_total']) #doctest:
→˓+NORMALIZE_WHITESPACE
[1. 0. 0. 0. 0.]

A_total trajectory for second run

>>> print(simulation_result.observables[1]['A_total']) #doctest: +SKIP
[1. 1. 1. 0. 0.]

For further information on retrieving trajectories (species, observables, expressions over time) from the
simulation_result object returned by run(), see the examples under the SimulationResult class.

run(tspan=None, initials=None, param_values=None, n_runs=1, algorithm=’ssa’, output_dir=None,
num_processors=1, seed=None, method=None, stats=False, epsilon=None, threshold=None)
Run a simulation and returns the result (trajectories)

Note: In early versions of the Simulator class, tspan, initials and param_values supplied to
this method persisted to future run() calls. This is no longer the case.

Parameters

tspan

initials

param_values See parameter definitions in StochKitSimulator.

n_runs [int] The number of simulation runs per parameter set. The total number of simula-
tions is therefore n_runs * max(len(initials), len(param_values))

algorithm [str] Choice of ‘ssa’ (Gillespie’s stochastic simulation algorithm) or ‘tau_leaping’
(Tau leaping algorithm)

output_dir [str or None] Directory for StochKit output, or None for a system-specific tem-
porary directory

num_processors [int] Number of CPU cores for StochKit to use (default: 1)

seed [int or None] A random number seed for StochKit. Set to any integer value for deter-
ministic behavior.

method [str or None] StochKit “method” argument, default None. Only used by StochKit
2.1 (not yet released at time of writing).

stats [bool] Ask StochKit to generate simulation summary statistics if True
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epsilon [float or None] Tolerance parameter for tau-leaping algorithm

threshold [int or None] Threshold parameter for tau-leaping algorithm

Returns

A SimulationResult object

class pysb.simulator.KappaSimulator(model, tspan=None, cleanup=True, verbose=False)
Simulate a model using Kappa

run(tspan=None, initials=None, param_values=None, n_runs=1, output_dir=None, out-
put_file_basename=None, cleanup=None, **additional_args)
Simulate a model using Kappa

Parameters

tspan: vector-like time span of simulation

initials: vector-like, optional initial conditions of model

param_values [vector-like or dictionary, optional] Values to use for every parameter in the
model. Ordering is determined by the order of model.parameters. If not specified, param-
eter values will be taken directly from model.parameters.

n_runs: int number of simulations to run

output_dir [string, optional] Location for temporary files generated by Kappa. If None (the
default), uses a temporary directory provided by the system. A temporary directory with a
random name is created within the supplied location.

output_file_basename [string, optional] This argument is used as a prefix for the temporary
Kappa output directory, rather than the individual files.

cleanup [bool, optional] If True (default), delete the temporary files after the simulation is
finished. If False, leave them in place (Useful for debugging). The default value, None,
means to use the value specified in __init__().

additional_args: kwargs, optional Additional arguments to pass to Kappa

• seed [int, optional] Random number seed for Kappa simulation

• perturbation [string, optional] Optional perturbation language syntax to be appended
to the Kappa file. See KaSim manual for more details.

Examples

>>> import numpy as np
>>> from pysb.examples import michment
>>> from pysb.simulator import KappaSimulator
>>> sim = KappaSimulator(michment.model, tspan=np.linspace(0, 1))
>>> x = sim.run(n_runs=1)

class pysb.simulator.SimulationResult(simulator, tout, trajectories=None, observ-
ables_and_expressions=None, squeeze=True,
simulations_per_param_set=1, model=None, ini-
tials=None, param_values=None)

Results of a simulation with properties and methods to access them.

4.3. Simulation tools (pysb.simulator) 51



pysb Documentation, Release 0+untagged.134.gd8a008d.dirty

Warning: Please note that the interface for this class is considered experimental and may change without
warning as PySB is updated.

Parameters

simulator [Simulator] The simulator object that generated the trajectories

tout: list-like Time points returned by the simulator (may be different from tspan if simu-
lation is interrupted for some reason).

trajectories [list or numpy.ndarray] A set of species trajectories from a simulation. Should
either be a list of 2D numpy arrays or a single 3D numpy array.

squeeze [bool, optional (default: True)] Return trajectories as a 2D array, rather than a 3d
array, if only a single simulation was performed.

simulations_per_param_set [int] Number of trajectories per parameter set. Typically al-
ways 1 for deterministic simulators (e.g. ODE), but with stochastic simulators multiple
trajectories per parameter/initial condition set are often desired.

model: pysb.Model

initials: numpy.ndarray

param_values: numpy.ndarray model, initials, param_values are an alternative
constructor mechanism used when loading SimulationResults from files (see
SimulationResult.load()). Setting just the simulator argument instead of
these arguments is recommended.

Notes

In the attribute descriptions, a “trajectory set” is a 2D numpy array, species on first axis and time on second axis,
with each element containing the concentration or count of the species at the specified time.

A list of trajectory sets contains a trajectory set for each simulation.

Examples

The following examples use a simple model with three observables and one expression, with a single simulation.

>>> from pysb.examples.expression_observables import model
>>> from pysb.simulator import ScipyOdeSimulator
>>> import numpy as np
>>> np.set_printoptions(precision=4)
>>> sim = ScipyOdeSimulator(model, tspan=np.linspace(0, 40, 10),
→˓ integrator_options={'atol': 1e-20})
>>> simulation_result = sim.run()

simulation_result is a SimulationResult object. An observable can be accessed like so:

>>> print(simulation_result.observables['Bax_c0']) #doctest: +NORMALIZE_
→˓WHITESPACE
[1.0000e+00 1.1744e-02 1.3791e-04 1.6196e-06 1.9020e-08
2.2337e-10 2.6232e-12 3.0806e-14 3.6178e-16 4.2492e-18]

It is also possible to retrieve the value of all observables at a particular time point, e.g. the final concentrations:
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>>> print(simulation_result.observables[-1]) #doctest: +SKIP
(4.2492e-18, 1.6996e-16, 1.)

Expressions are read in the same way as observables:

>>> print(simulation_result.expressions['NBD_signal']) #doctest:
→˓+NORMALIZE_WHITESPACE
[0. 4.7847 4.9956 4.9999 5. 5. 5. 5. 5. 5. ]

The species trajectories can be accessed as a numpy ndarray:

>>> print(simulation_result.species) #doctest: +NORMALIZE_WHITESPACE
[[1.0000e+00 0.0000e+00 0.0000e+00]
[1.1744e-02 5.2194e-02 9.3606e-01]
[1.3791e-04 1.2259e-03 9.9864e-01]
[1.6196e-06 2.1595e-05 9.9998e-01]
[1.9020e-08 3.3814e-07 1.0000e+00]
[2.2337e-10 4.9637e-09 1.0000e+00]
[2.6232e-12 6.9951e-11 1.0000e+00]
[3.0806e-14 9.5840e-13 1.0000e+00]
[3.6178e-16 1.2863e-14 1.0000e+00]
[4.2492e-18 1.6996e-16 1.0000e+00]]

Species, observables and expressions can be combined into a single numpy ndarray and accessed similarly.
Here, the initial concentrations of all these entities are examined:

>>> print(simulation_result.all[0]) #doctest: +SKIP
( 1., 0., 0., 1., 0., 0., 0.)

The all array can be accessed as a pandas DataFrame object, which allows for more convenient indexing and
access to pandas advanced functionality, such as indexing and slicing. Here, the concentrations of the observable
Bax_c0 and the expression NBD_signal are read at time points between 5 and 15 seconds:

>>> df = simulation_result.dataframe
>>> print(df.loc[5:15, ['Bax_c0', 'NBD_signal']]) #doctest: +NORMALIZE_
→˓WHITESPACE

Bax_c0 NBD_signal
time
8.888889 0.000138 4.995633
13.333333 0.000002 4.999927

all
Aggregate species, observables, and expressions trajectories into a numpy.ndarray with record-style data-
type for return to the user.

dataframe
A conversion of the trajectory sets (species, observables and expressions for all simulations) into a single
pandas.DataFrame.

expressions
List of trajectory sets. The first dimension contains expressions.

classmethod load(filename, dataset_name=None, group_name=None)
Load a SimulationResult from a file (HDF5 format)

For a description of the file format see save()

Parameters
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filename: str Filename from which to load data

dataset_name: str or None Dataset name. Can be left as None when the group specified
only contains one dataset, which will then be selected. If None and more than one
dataset is in the group, a ValueError is raised.

group_name: str or None Group name. This is typically the name of the model. Can
be left as None when the file only contains one group, which will then be selected. If
None and more than group is in the file a ValueError is raised.

Returns

SimulationResult Set of trajectories and associated metadata loaded from the file

nsims
The number of simulations in this SimulationResult

observable(pattern)
Calculate a pattern’s trajectories without adding to model

This method calculates an observable “on demand” using any supplied MonomerPattern or ComplexPat-
tern against the simulation result, without re-running the simulation.

Note that the monomers within the supplied pattern are reconciled with the SimulationResult’s internal
copy of the model by name. This method only works on simulations which calculate species trajectories
(i.e. it will not work on network-free simulations).

Raises a ValueError if the pattern does not match at least one species.

Parameters

pattern: pysb.MonomerPattern or pysb.ComplexPattern An observable pattern to
match

Returns

pandas.Series Series containing the simulation trajectories for the specified observable

Examples

>>> from pysb import ANY
>>> from pysb.examples import earm_1_0
>>> from pysb.simulator import ScipyOdeSimulator
>>> simres = ScipyOdeSimulator(earm_1_0.model, tspan=range(5)).run()
>>> m = earm_1_0.model.monomers

Observable of bound Bid:

>>> simres.observable(m.Bid(b=ANY))
time
0 0.000000e+00
1 1.190933e-12
2 2.768582e-11
3 1.609716e-10
4 5.320530e-10
dtype: float64

Observable of AMito bound to mCytoC:
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>>> simres.observable(m.AMito(b=1) % m.mCytoC(b=1))
time
0 0.000000e+00
1 1.477319e-77
2 1.669917e-71
3 5.076939e-69
4 1.157400e-66
dtype: float64

observables
List of trajectory sets. The first dimension contains observables.

save(filename, dataset_name=None, group_name=None, append=False, include_obs_exprs=False)
Save a SimulationResult to a file (HDF5 format)

HDF5 is a hierarchical, binary storage format well suited to storing matrix-like data. Our implementation
requires the h5py package.

Each SimulationResult is treated as an HDF5 dataset, stored within a group which is specific to a model.
In this way, it is possible to save multiple SimulationResults for a specific model.

A group is first created in the HDF file root (see group_name argument). Within that group, a dataset
“_model” has a JSON version of the PySB model. SimulationResult are stored as groups within the
model group.

The file hierarchy under group_name/dataset_name/ then consists of the following HDF5 gzip compressed
HDF5 datasets: trajectories, param_values, initials, tout, observables (optional) and expressions (op-
tional); and the following attributes: simulator_class (pickled Class), simulator_kwargs (pickled dict),
squeeze (bool), simulations_per_param_set (int), pysb_version (str), timestamp (ISO 8601 format).

Custom attributes can be stored in the SimulationResult’s custom_attrs dictionary. Keys should be strings,
values can be any picklable object. When saved to HDF5, these custom attributes will be prefixed with
usrattr_.

Parameters

filename: str Filename to which the data will be saved

dataset_name: str or None Dataset name. If None, it will default to ‘result’. If the
dataset_name already exists within the group, a ValueError is raised.

group_name: str or None Group name. If None, will default to the name of the model.

append: bool If False, raise IOError if the specified file already exists. If True, append
to existing file (or create if it doesn’t exist).

include_obs_exprs: bool Whether to save observables and expressions in the file or not.
If they are not included, they can be recreated from the model and species trajectories
when loaded back into PySB, but you may wish to include them for use with external
software, or if you have complex expressions which take a long time to compute.

species
List of trajectory sets. The first dimension contains species.

class pysb.simulator.PopulationMap(complex_pattern, lumping_rate, counter_species=None)
Population map for BioNetGen hybrid particle/population simulation

For use with the BngSimulator.
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References

Hogg et al. 2014: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003544

BioNetGen HPP documentation: http://bionetgen.org/index.php/Hybrid_particle-population_model_generator

4.4 Testing PySB Models (pysb.testing.modeltests)

class pysb.testing.modeltests.AllObservablesInRules(*args, **kwargs)

class pysb.testing.modeltests.ModelAssertion(*args, **kwargs)
Base class for model assertions

exception pysb.testing.modeltests.ModelAssertionFailure(assertion, model, mes-
sage=None)

class pysb.testing.modeltests.ReactionAssertion(*args, **kwargs)

class pysb.testing.modeltests.ReactionNetworkAssertion(*args, **kwargs)
Base class for reaction network assertions

Checks the reaction network has been generated

class pysb.testing.modeltests.RuleAssertion(*args, **kwargs)

class pysb.testing.modeltests.SpeciesAssertion(*args, **kwargs)
Class for checking species within a reaction network

class pysb.testing.modeltests.SpeciesDoesNotExist(*args, **kwargs)

class pysb.testing.modeltests.SpeciesExists(*args, **kwargs)
Checks a species pattern exists in the list of species

class pysb.testing.modeltests.SpeciesIsProduct(*args, **kwargs)
Checks a species pattern appears on the product side of a reaction

class pysb.testing.modeltests.SpeciesIsReactant(*args, **kwargs)
Checks a species pattern appears on the reactant side of a reaction

class pysb.testing.modeltests.SpeciesNeverProduct(*args, **kwargs)

class pysb.testing.modeltests.SpeciesNeverReactant(*args, **kwargs)

class pysb.testing.modeltests.SpeciesOnlyProduct(*args, **kwargs)
Checks a species appears as a product but never as a reactant

class pysb.testing.modeltests.SpeciesOnlyReactant(*args, **kwargs)
Checks a species appears as a reactant but never as a product

class pysb.testing.modeltests.TestSuite(model=None)
A suite of tests for checking properties of a model

There are two modes of operation: building a test suite using add() and executing all the tests at once with
check_all(), or executing tests immediately with check().

Examples

Create a test suite for the EARM 1.0 model:
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>>> from pysb.testing.modeltests import TestSuite, SpeciesExists,
→˓SpeciesDoesNotExist
>>> from pysb.bng import generate_equations
>>> from pysb.examples.earm_1_0 import model
>>> ts = TestSuite(model)

Create variables for model components (not needed for models defined interactively):

>>> AMito, mCytoC, mSmac, cSmac, L, CPARP = [model.monomers[m] for m in
→˓ ('AMito', 'mCytoC', 'mSmac', 'cSmac',
→˓ 'L', 'CPARP')]

Add some assertions:

Check that AMito(b=1) % mSmac(b=1) exists in the species graph (note this doesn’t guarantee the species will
actually be producted/consumed/change in concentration; that depends on the rate constants):

>>> ts.add(SpeciesExists(AMito(b=1) % mSmac(b=1)))

This is the opposite check, that the complex above doesn’t exist, which should of course fail:

>>> ts.add(SpeciesDoesNotExist(AMito(b=1) % mSmac(b=1)))

We can also specify that species matching a pattern should never exist in a model. For example, we shouldn’t
ever be producing unbound ligand in the EARM 1.0 model:

>>> ts.add(SpeciesNeverProduct(L(b=None)))

We could also have used SpeciesOnlyReactant. The difference is the latter checks for an appearance as a
reactant, whereas SpeciesNeverProduct would pass whether the species appeared as a reactant or not.

>>> ts.add(SpeciesOnlyReactant(L(b=None)))

CPARP is an output in this model, so it should appear as a product but never as a reactant:

>>> ts.add(SpeciesOnlyProduct(CPARP()))

When we’re ready, we can generate the reactions and check the assertions:

>>> generate_equations(model)
>>> ts.check_all() # doctest:+ELLIPSIS
SpeciesExists(AMito() % mSmac())...OK...
SpeciesDoesNotExist(AMito() % mSmac())...FAIL...
[AMito(b=1) % mSmac(b=1)]...

SpeciesExists(AMito(b=1) % mCytoC(b=1))...OK...
SpeciesNeverProduct(L(b=None))...OK...
SpeciesOnlyProduct(CPARP())...OK...

We can also execute any test immediately without adding it to the test suite (note that some tests require a
reaction network to be generated):

>>> ts.check(SpeciesExists(L(b=None)))
True

check(assertion)
Checks an assertion immediately without adding it to the test suite

Parameters
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assertion: ModelAssertion An instance of the ModelAssertion subclass

Returns

True if assertion succeeded or raises a ModelAssertionFailure

exception if not

check_all(stop_on_exception=False)
Runs all assertions in the test suite

4.5 BioNetGen integration (pysb.bng)

class pysb.bng.BngBaseInterface(model=None, verbose=False, cleanup=False,
output_prefix=None, output_dir=None,
model_additional_species=None,
model_population_maps=None)

Abstract base class for interfacing with BNG

action(action, **kwargs)
Generates code to execute a BNG action command

Parameters

action: string The name of the BNG action function

kwargs: kwargs, optional Arguments and values to supply to BNG

base_filename
Returns the base filename (without extension) for BNG output files

bng_filename
Returns the BNG command list (.bngl) filename (does not check whether the file exists)

net_filename
Returns the BNG network filename (does not check whether the file exists)

read_netfile()
Reads a BNG network file as a string. Note that you must execute network generation separately before
attempting this, or the file will not be found. :return: Contents of the BNG network file as a string

read_simulation_results()
Read the results of a BNG simulation as a numpy array

Returns

numpy.ndarray Simulation results in a 2D matrix (time on Y axis,
species/observables/expressions on X axis depending on simulation type)

static read_simulation_results_multi(base_filenames)
Read the results of multiple BNG simulations

Parameters

base_filenames: list of str A list of filename stems to read simulation results in from,
including the full path but not including any file extension.

Returns

list of numpy.ndarray List of simulation results, each in a 2D matrix (time on Y axis,
species/observables/expressions on X axis depending on simulation type)
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class pysb.bng.BngConsole(model=None, verbose=False, cleanup=True, output_dir=None,
output_prefix=None, timeout=30, suppress_warnings=False,
model_additional_species=None)

Interact with BioNetGen through BNG Console

action(action, **kwargs)
Generates a BNG action command and executes it through the console, returning any console output

Parameters

action [string] The name of the BNG action function

kwargs [kwargs, optional] Arguments and values to supply to BNG

generate_network(overwrite=False)
Generates a network in BNG and returns the network file contents as a string

Parameters

overwrite: bool, optional Overwrite existing network file, if any

load_bngl(bngl_file)
Load a BNGL file in the BNG console

Parameters

bngl_file [string] The filename of a .bngl file

class pysb.bng.BngFileInterface(model=None, verbose=False, out-
put_dir=None, output_prefix=None,
cleanup=True, model_additional_species=None,
model_population_maps=None)

action(action, **kwargs)
Generates a BNG action command and adds it to the command queue

Parameters

action [string] The name of the BNG action function

kwargs [kwargs, optional] Arguments and values to supply to BNG

execute(reload_netfile=False, skip_file_actions=True)
Executes all BNG commands in the command queue.

Parameters

reload_netfile: bool or str If true, attempts to reload an existing .net file from a previous
execute() iteration. If a string, the filename specified in the string is supplied to BNG’s
readFile (which can be any file type BNG supports, such as .net or .bngl). This is
useful for running multiple actions in a row, where results need to be read into PySB
before a new series of actions is executed.

skip_file_actions: bool Only used if the previous argument is not False. Set this argu-
ment to True to ignore any actions block in the loaded file.

set_concentration(cplx_pat, value)
Generates a BNG action command and adds it to the command queue

Parameters

cplx_pat: pysb.ComplexPattern or string Species ComplexPattern, or a BNG format
string representation

value: float-like Initial concentration
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set_parameter(name, value)
Generates a BNG action command and adds it to the command queue

Parameters

name: string The name of the parameter to set

value: float-like Value of parameter

exception pysb.bng.BngInterfaceError
BNG reported an error

exception pysb.bng.NoInitialConditionsError
Model initial_conditions is empty.

exception pysb.bng.NoRulesError
Model rules is empty.

pysb.bng.generate_equations(model, cleanup=True, verbose=False, **kwargs)
Generate math expressions for reaction rates and species in a model.

This fills in the following pieces of the model:

• species

• reactions

• reactions_bidirectional

• observables (just coefficients and species fields for each element)

Parameters

model [Model] Model to pass to generate_network.

cleanup [bool, optional] If True (default), delete the temporary files after the simulation is
finished. If False, leave them in place (in output_dir). Useful for debugging.

verbose [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the
logging levels and constants from Python’s logging module for interpretation of integer
values. False is equal to the PySB default level (currently WARNING), True is equal to
DEBUG.

pysb.bng.generate_network(model, cleanup=True, append_stdout=False, verbose=False,
**kwargs)

Return the output from BNG’s generate_network function given a model.

The output is a BNGL model definition with additional sections ‘reactions’ and ‘groups’, and the ‘species’
section expanded to contain all possible species. BNG refers to this as a ‘net’ file.

Parameters

model [Model] Model to pass to generate_network.

cleanup [bool, optional] If True (default), delete the temporary files after the simulation is
finished. If False, leave them in place (in output_dir). Useful for debugging.

append_stdout [bool, optional] This option is no longer supported and has been left here for
API compatibility reasons.

verbose [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the
logging levels and constants from Python’s logging module for interpretation of integer
values. False is equal to the PySB default level (currently WARNING), True is equal to
DEBUG.
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pysb.bng.load_equations(model, netfile)
Load model equations from a specified netfile

Useful for large models where BioNetGen network generation takes a long time - the .net file can be saved and
reloaded using this function at a later date.

Parameters

model: pysb.Model PySB model file

netfile: str BNG netfile

pysb.bng.parse_bngl_expr(text, *args, **kwargs)
Convert a BNGL math expression string to a sympy Expr.

pysb.bng.run_ssa(model, t_end=10, n_steps=100, param_values=None, output_dir=None, out-
put_file_basename=None, cleanup=True, verbose=False, **additional_args)

Simulate a model with BNG’s SSA simulator and return the trajectories.

Parameters

model [Model] Model to simulate.

t_end [number, optional] Final time point of the simulation.

n_steps [int, optional] Number of steps in the simulation.

param_values [vector-like or dictionary, optional] Values to use for every parameter in the
model. Ordering is determined by the order of model.parameters. If not specified, pa-
rameter values will be taken directly from model.parameters.

output_dir [string, optional] Location for temporary files generated by BNG. If None (the
default), uses a temporary directory provided by the system. A temporary directory with
a random name is created within the supplied location.

output_file_basename [string, optional] This argument is used as a prefix for the temporary
BNG output directory, rather than the individual files.

cleanup [bool, optional] If True (default), delete the temporary files after the simulation is
finished. If False, leave them in place. Useful for debugging.

verbose [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the
logging levels and constants from Python’s logging module for interpretation of integer
values. False is equal to the PySB default level (currently WARNING), True is equal to
DEBUG.

additional_args: kwargs, optional Additional arguments to pass to BioNetGen

pysb.bng.set_bng_path(dir)
Deprecated. Use pysb.pathfinder.set_path() instead.

4.6 Kappa integration (pysb.kappa)

Wrapper functions for running the Kappa programs KaSim and KaSa.

The path to the directory containing the KaSim and KaSa executables can be specified in one of three ways:

• set the KAPPAPATH environment variable to the KaSim directory

• move Kappa to /usr/local/share/KaSim (macOS, Linux) or c:Program FilesKaSim (Windows)

• set the path using the pysb.pathfinder.set_path() function at runtime
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exception pysb.kappa.KasaInterfaceError

exception pysb.kappa.KasimInterfaceError

class pysb.kappa.SimulationResult(timecourse, flux_map)

flux_map
Alias for field number 1

timecourse
Alias for field number 0

class pysb.kappa.StaticAnalysisResult(contact_map, influence_map)

contact_map
Alias for field number 0

influence_map
Alias for field number 1

pysb.kappa.contact_map(model, **kwargs)
Generates the contact map via KaSa.

Parameters

model [pysb.core.Model] The model for generating the influence map.

**kwargs [other keyword arguments] Any other keyword arguments are passed to the func-
tion run_static_analysis().

Returns

networkx MultiGraph object containing the contact map. For details on

viewing the contact map graphically see run_static_analysis() (notes

section).

pysb.kappa.influence_map(model, **kwargs)
Generates the influence map via KaSa.

Parameters

model [pysb.core.Model] The model for generating the influence map.

**kwargs [other keyword arguments] Any other keyword arguments are passed to the func-
tion run_static_analysis().

Returns

networkx MultiGraph object containing the influence map. For details on

viewing the influence map graphically see run_static_analysis()

(notes section).

pysb.kappa.run_simulation(model, time=10000, points=200, cleanup=True, output_prefix=None,
output_dir=None, flux_map=False, perturbation=None, seed=None,
verbose=False)

Runs the given model using KaSim and returns the parsed results.

Deprecated since version 1.10.

Use pysb.simulator.KappaSimulator() instead

Parameters

62 Chapter 4. PySB Modules Reference



pysb Documentation, Release 0+untagged.134.gd8a008d.dirty

model [pysb.core.Model] The model to simulate/analyze using KaSim.

time [number] The amount of time (in arbitrary units) to run a simulation. Identical to the -u
time -l argument when using KaSim at the command line. Default value is 10000. If set
to 0, no simulation will be run.

points [integer] The number of data points to collect for plotting. Note that this is not identi-
cal to the -p argument of KaSim when called from the command line, which denotes plot
period (time interval between points in plot). Default value is 200. Note that the number
of points actually returned by the simulator will be points + 1 (including the 0 point).

cleanup [boolean] Specifies whether output files produced by KaSim should be deleted after
execution is completed. Default value is True.

output_prefix: str Prefix of the temporary directory name. Default is ‘tmpKappa_<model
name>_’.

output_dir [string] The directory in which to create the temporary directory for the .ka and
other output files. Defaults to the system temporary file directory (e.g. /tmp). If the
specified directory does not exist, an Exception is thrown.

flux_map: boolean Specifies whether or not to produce the flux map (generated over the full
duration of the simulation). Default value is False.

perturbation [string or None] Optional perturbation language syntax to be appended to the
Kappa file. See KaSim manual for more details. Default value is None (no perturbation).

seed [integer] A seed integer for KaSim random number generator. Set to None to allow
KaSim to use a random seed (default) or supply a seed for deterministic behaviour (e.g.
for testing)

verbose [boolean] Whether to pass the output of KaSim through to stdout/stderr.

Returns

If flux_map is False, returns the kasim simulation data as a Numpy ndarray.

Data is accessed using the syntax:: results[index_name]

The index ‘time’ gives the time coordinates of the simulation. Data for the

observables can be accessed by indexing the array with the names of the

observables. Each entry in the ndarray has length points + 1, due to the

inclusion of both the zero point and the final timepoint.

If flux_map is True, returns an instance of SimulationResult, a namedtuple

with two members, timecourse and flux_map. The timecourse field

contains the simulation ndarray, and the flux_map field is an instance of

a networkx MultiGraph containing the flux map. For details on viewing

the flux map graphically see run_static_analysis() (notes section).

pysb.kappa.run_static_analysis(model, influence_map=False, contact_map=False,
cleanup=True, output_prefix=None, output_dir=None, ver-
bose=False)

Run static analysis (KaSa) on to get the contact and influence maps.

If neither influence_map nor contact_map are set to True, then a ValueError is raised.

Parameters

model [pysb.core.Model] The model to simulate/analyze using KaSa.
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influence_map [boolean] Whether to compute the influence map.

contact_map [boolean] Whether to compute the contact map.

cleanup [boolean] Specifies whether output files produced by KaSa should be deleted after
execution is completed. Default value is True.

output_prefix: str Prefix of the temporary directory name. Default is ‘tmpKappa_<model
name>_’.

output_dir [string] The directory in which to create the temporary directory for the .ka and
other output files. Defaults to the system temporary file directory (e.g. /tmp). If the
specified directory does not exist, an Exception is thrown.

verbose [boolean] Whether to pass the output of KaSa through to stdout/stderr.

Returns

StaticAnalysisResult, a namedtuple with two fields, contact_map and

influence_map, each containing the respective result as an instance

of a networkx MultiGraph. If the either the contact_map or influence_map

argument to the function is False, the corresponding entry in the

StaticAnalysisResult returned by the function will be None.

Notes

To view a networkx file graphically, use draw_network:

import networkx as nx
nx.draw_networkx(g, with_labels=True)

You can use graphviz_layout to use graphviz for layout (requires pydot library):

import networkx as nx
pos = nx.drawing.nx_pydot.graphviz_layout(g, prog='dot')
nx.draw_networkx(g, pos, with_labels=True)

For further information, see the networkx documentation on visualization: https://networkx.github.io/
documentation/latest/reference/drawing.html

pysb.kappa.set_kappa_path(path)
Set the path to the KaSim and KaSa executables.

Deprecated. Use pysb.pathfinder.set_path() instead.

Parameters

path: string Directory containing KaSim and KaSa executables.

4.7 Macros (pysb.macros)

A collection of generally useful modeling macros.

These macros are written to be as generic and reusable as possible, serving as a collection of best practices and
implementation ideas. They conform to the following general guidelines:
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• All components created by the macro are implicitly added to the current model and explicitly returned in a
ComponentSet.

• Parameters may be passed as Parameter or Expression objects, or as plain numbers for which Parameter objects
will be automatically created using an appropriate naming convention.

• Arguments which accept a MonomerPattern should also accept Monomers, which are to be interpreted as
MonomerPatterns on that Monomer with an empty condition list. This is typically implemented by having
the macro apply the “call” (parentheses) operator to the argument with an empty argument list and using the
resulting value instead of the original argument when creating Rules, e.g. arg = arg(). Calling a Monomer
will return a MonomerPattern, and calling a MonomerPattern will return a copy of itself, so calling either is
guaranteed to return a MonomerPattern.

The _macro_rule helper function contains much of the logic needed to follow these guidelines. Every macro in this
module either uses _macro_rule directly or calls another macro which does.

Another useful function is _verify_sites which will raise an exception if a Monomer or MonomerPattern does not
possess every one of a given list of sites. This can be used to trigger such errors up front rather than letting an
exception occur at the point where the macro tries to use the invalid site in a pattern, which can be harder for the caller
to debug.

pysb.macros.equilibrate(s1, s2, klist)
Generate the unimolecular reversible equilibrium reaction S1 <-> S2.

Parameters

s1, s2 [Monomer or MonomerPattern] S1 and S2 in the above reaction.

klist [list of 2 Parameters or list of 2 numbers] Forward (S1 -> S2) and reverse rate constants
(in that order). If Parameters are passed, they will be used directly in the generated
Rules. If numbers are passed, Parameters will be created with automatically generated
names based on the names and states of S1 and S2 and these parameters will be included
at the end of the returned component list.

Returns

components [ComponentSet] The generated components. Contains one reversible Rule and
optionally two Parameters if klist was given as plain numbers.

Examples

Simple two-state equilibrium between A and B:

Model()
Monomer('A')
Monomer('B')
equilibrate(A(), B(), [1, 1])

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('A')
Monomer('A')
>>> Monomer('B')
Monomer('B')
>>> equilibrate(A(), B(), [1, 1])
ComponentSet([

(continues on next page)
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Rule('equilibrate_A_to_B', A() | B(), equilibrate_A_to_B_kf, equilibrate_A_to_B_
→˓kr),
Parameter('equilibrate_A_to_B_kf', 1.0),
Parameter('equilibrate_A_to_B_kr', 1.0),
])

pysb.macros.bind(s1, site1, s2, site2, klist)
Generate the reversible binding reaction S1 + S2 | S1:S2.

Parameters

s1, s2 [Monomer or MonomerPattern] Monomers participating in the binding reaction.

site1, site2 [string] The names of the sites on s1 and s2 used for binding.

klist [list of 2 Parameters or list of 2 numbers] Forward and reverse rate constants (in that or-
der). If Parameters are passed, they will be used directly in the generated Rules. If num-
bers are passed, Parameters will be created with automatically generated names based on
the names and states of S1 and S2 and these parameters will be included at the end of the
returned component list.

Returns

components [ComponentSet] The generated components. Contains the bidirectional binding
Rule and optionally two Parameters if klist was given as numbers.

Examples

Binding between A and B:

Model()
Monomer('A', ['x'])
Monomer('B', ['y'])
bind(A, 'x', B, 'y', [1e-4, 1e-1])

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('A', ['x'])
Monomer('A', ['x'])
>>> Monomer('B', ['y'])
Monomer('B', ['y'])
>>> bind(A, 'x', B, 'y', [1e-4, 1e-1])
ComponentSet([
Rule('bind_A_B', A(x=None) + B(y=None) | A(x=1) % B(y=1), bind_A_B_kf, bind_A_B_
→˓kr),
Parameter('bind_A_B_kf', 0.0001),
Parameter('bind_A_B_kr', 0.1),
])

pysb.macros.bind_table(bindtable, row_site, col_site, kf=None)
Generate a table of reversible binding reactions.

Given two lists of species R and C, calls the bind macro on each pairwise combination (R[i], C[j]). The species
lists and the parameter values are passed as a list of lists (i.e. a table) with elements of R passed as the “row
headers”, elements of C as the “column headers”, and forward / reverse rate pairs (in that order) as tuples in the
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“cells”. For example with two elements in each of R and C, the table would appear as follows (note that the first
row has one fewer element than the subsequent rows):

[[ C1, C2],
[R1, (1e-4, 1e-1), (2e-4, 2e-1)],
[R2, (3e-4, 3e-1), (4e-4, 4e-1)]]

Each parameter tuple may contain Parameters or numbers. If Parameters are passed, they will be used directly
in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names
based on the names and states of the relevant species and these parameters will be included at the end of the
returned component list. To omit any individual reaction, pass None in place of the corresponding parameter
tuple.

Alternately, single kd values (dissociation constant, kr/kf) may be specified instead of (kf, kr) tuples. If kds
are used, a single shared kf Parameter or number must be passed as an extra kf argument. kr values for each
binding reaction will be calculated as kd*kf. It is important to remember that the forward rate constant is a
single parameter shared across the entire bind table, as this may have implications for parameter fitting.

Parameters

bindtable [list of lists] Table of reactants and rates, as described above.

row_site, col_site [string] The names of the sites on the elements of R and C, respectively,
used for binding.

kf [Parameter or number, optional] If the “cells” in bindtable are given as single kd values,
this is the shared kf used to calculate the kr values.

Returns

components [ComponentSet] The generated components. Contains the bidirectional binding
Rules and optionally the Parameters for any parameters given as numbers.

Examples

Binding table for two species types (R and C), each with two members:

Model()
Monomer('R1', ['x'])
Monomer('R2', ['x'])
Monomer('C1', ['y'])
Monomer('C2', ['y'])
bind_table([[ C1, C2],

[R1, (1e-4, 1e-1), (2e-4, 2e-1)],
[R2, (3e-4, 3e-1), None]],
'x', 'y')

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('R1', ['x'])
Monomer('R1', ['x'])
>>> Monomer('R2', ['x'])
Monomer('R2', ['x'])
>>> Monomer('C1', ['y'])
Monomer('C1', ['y'])

(continues on next page)

4.7. Macros (pysb.macros) 67



pysb Documentation, Release 0+untagged.134.gd8a008d.dirty

(continued from previous page)

>>> Monomer('C2', ['y'])
Monomer('C2', ['y'])
>>> bind_table([[ C1, C2],
... [R1, (1e-4, 1e-1), (2e-4, 2e-1)],
... [R2, (3e-4, 3e-1), None]],
... 'x', 'y')
ComponentSet([
Rule('bind_R1_C1', R1(x=None) + C1(y=None) | R1(x=1) % C1(y=1),

bind_R1_C1_kf, bind_R1_C1_kr),
Parameter('bind_R1_C1_kf', 0.0001),
Parameter('bind_R1_C1_kr', 0.1),
Rule('bind_R1_C2', R1(x=None) + C2(y=None) | R1(x=1) % C2(y=1),

bind_R1_C2_kf, bind_R1_C2_kr),
Parameter('bind_R1_C2_kf', 0.0002),
Parameter('bind_R1_C2_kr', 0.2),
Rule('bind_R2_C1', R2(x=None) + C1(y=None) | R2(x=1) % C1(y=1),

bind_R2_C1_kf, bind_R2_C1_kr),
Parameter('bind_R2_C1_kf', 0.0003),
Parameter('bind_R2_C1_kr', 0.3),
])

pysb.macros.catalyze(enzyme, e_site, substrate, s_site, product, klist)
Generate the two-step catalytic reaction E + S | E:S >> E + P.

Parameters

enzyme, substrate, product [Monomer or MonomerPattern] E, S and P in the above reac-
tion.

e_site, s_site [string] The names of the sites on enzyme and substrate (respectively) where
they bind each other to form the E:S complex.

klist [list of 3 Parameters or list of 3 numbers] Forward, reverse and catalytic rate constants
(in that order). If Parameters are passed, they will be used directly in the generated Rules.
If numbers are passed, Parameters will be created with automatically generated names
based on the names and states of enzyme, substrate and product and these parameters
will be included at the end of the returned component list.

Returns

components [ComponentSet] The generated components. Contains two Rules (bidirectional
complex formation and unidirectional product dissociation), and optionally three Param-
eters if klist was given as plain numbers.

Notes

When passing a MonomerPattern for enzyme or substrate, do not include e_site or s_site in the respective
patterns. The macro will handle this.

Examples

Using distinct Monomers for substrate and product:

Model()
Monomer('E', ['b'])
Monomer('S', ['b'])

(continues on next page)
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Monomer('P')
catalyze(E(), 'b', S(), 'b', P(), (1e-4, 1e-1, 1))

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('E', ['b'])
Monomer('E', ['b'])
>>> Monomer('S', ['b'])
Monomer('S', ['b'])
>>> Monomer('P')
Monomer('P')
>>> catalyze(E(), 'b', S(), 'b', P(), (1e-4, 1e-1, 1))
ComponentSet([
Rule('bind_E_S_to_ES', E(b=None) + S(b=None) | E(b=1) % S(b=1),

bind_E_S_to_ES_kf, bind_E_S_to_ES_kr),
Parameter('bind_E_S_to_ES_kf', 0.0001),
Parameter('bind_E_S_to_ES_kr', 0.1),
Rule('catalyze_ES_to_E_P', E(b=1) % S(b=1) >> E(b=None) + P(),

catalyze_ES_to_E_P_kc),
Parameter('catalyze_ES_to_E_P_kc', 1.0),
])

Using a single Monomer for substrate and product with a state change:

Monomer('Kinase', ['b'])
Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
catalyze(Kinase(), 'b', Substrate(y='U'), 'b', Substrate(y='P'),

(1e-4, 1e-1, 1))

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('Kinase', ['b'])
Monomer('Kinase', ['b'])
>>> Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
>>> catalyze(Kinase(), 'b', Substrate(y='U'), 'b', Substrate(y='P'), (1e-4, 1e-1,
→˓1))
ComponentSet([
Rule('bind_Kinase_SubstrateU_to_KinaseSubstrateU',

Kinase(b=None) + Substrate(b=None, y='U') | Kinase(b=1) % Substrate(b=1, y='U
→˓'),

bind_Kinase_SubstrateU_to_KinaseSubstrateU_kf,
bind_Kinase_SubstrateU_to_KinaseSubstrateU_kr),

Parameter('bind_Kinase_SubstrateU_to_KinaseSubstrateU_kf', 0.0001),
Parameter('bind_Kinase_SubstrateU_to_KinaseSubstrateU_kr', 0.1),
Rule('catalyze_KinaseSubstrateU_to_Kinase_SubstrateP',

Kinase(b=1) % Substrate(b=1, y='U') >> Kinase(b=None) + Substrate(b=None, y=
→˓'P'),

catalyze_KinaseSubstrateU_to_Kinase_SubstrateP_kc),
Parameter('catalyze_KinaseSubstrateU_to_Kinase_SubstrateP_kc', 1.0),
])
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pysb.macros.catalyze_state(enzyme, e_site, substrate, s_site, mod_site, state1, state2, klist)
Generate the two-step catalytic reaction E + S | E:S >> E + P. A wrapper around catalyze() with a signature
specifying the state change of the substrate resulting from catalysis.

Parameters

enzyme [Monomer or MonomerPattern] E in the above reaction.

substrate [Monomer or MonomerPattern] S and P in the above reaction. The product species
is assumed to be identical to the substrate species in all respects except the state of
the modification site. The state of the modification site should not be specified in the
MonomerPattern for the substrate.

e_site, s_site [string] The names of the sites on enzyme and substrate (respectively) where
they bind each other to form the E:S complex.

mod_site [string] The name of the site on the substrate that is modified by catalysis.

state1, state2 [strings] The states of the modification site (mod_site) on the substrate before
(state1) and after (state2) catalysis.

klist [list of 3 Parameters or list of 3 numbers] Forward, reverse and catalytic rate constants
(in that order). If Parameters are passed, they will be used directly in the generated Rules.
If numbers are passed, Parameters will be created with automatically generated names
based on the names and states of enzyme, substrate and product and these parameters
will be included at the end of the returned component list.

Returns

components [ComponentSet] The generated components. Contains two Rules (bidirectional
complex formation and unidirectional product dissociation), and optionally three Param-
eters if klist was given as plain numbers.

Notes

When passing a MonomerPattern for enzyme or substrate, do not include e_site or s_site in the respective
patterns. In addition, do not include the state of the modification site on the substrate. The macro will handle
this.

Examples

Using a single Monomer for substrate and product with a state change:

Monomer('Kinase', ['b'])
Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
catalyze_state(Kinase, 'b', Substrate, 'b', 'y', 'U', 'P',

(1e-4, 1e-1, 1))

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('Kinase', ['b'])
Monomer('Kinase', ['b'])
>>> Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
Monomer('Substrate', ['b', 'y'], {'y': ('U', 'P')})
>>> catalyze_state(Kinase, 'b', Substrate, 'b', 'y', 'U', 'P', (1e-4, 1e-1, 1))

(continues on next page)
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ComponentSet([
Rule('bind_Kinase_SubstrateU_to_KinaseSubstrateU',

Kinase(b=None) + Substrate(b=None, y='U') | Kinase(b=1) % Substrate(b=1, y='U
→˓'),

bind_Kinase_SubstrateU_to_KinaseSubstrateU_kf,
bind_Kinase_SubstrateU_to_KinaseSubstrateU_kr),

Parameter('bind_Kinase_SubstrateU_to_KinaseSubstrateU_kf', 0.0001),
Parameter('bind_Kinase_SubstrateU_to_KinaseSubstrateU_kr', 0.1),
Rule('catalyze_KinaseSubstrateU_to_Kinase_SubstrateP',

Kinase(b=1) % Substrate(b=1, y='U') >> Kinase(b=None) + Substrate(b=None, y=
→˓'P'),

catalyze_KinaseSubstrateU_to_Kinase_SubstrateP_kc),
Parameter('catalyze_KinaseSubstrateU_to_Kinase_SubstrateP_kc', 1.0),
])

pysb.macros.catalyze_complex(enzyme, e_site, substrate, s_site, product, klist, m1=None,
m2=None)

Generate the two-step catalytic reaction E + S | E:S >> E + P, while allowing complexes to serve as enzyme,
substrate and/or product.

E:S1 + S:S2 | E:S1:S:S2 >> E:S1 + P:S2

Parameters

enzyme, substrate, product [Monomer, MonomerPattern, or ComplexPattern]

Monomers or complexes participating in the binding reaction.

e_site, s_site [string]

The names of the sites on ‘enzyme‘ and ‘substrate‘ (respectively) where

they bind each other to form the E:S complex.

klist [list of 3 Parameters or list of 3 numbers]

Forward, reverse and catalytic rate constants (in that order). If

Parameters are passed, they will be used directly in the generated

Rules. If numbers are passed, Parameters will be created with

automatically generated names based on the names and states of enzyme,

substrate and product and these parameters will be included at the end

of the returned component list.

m1, m2 [Monomer or MonomerPattern]

If enzyme or substrate binding site is present in multiple monomers

within a complex, the specific monomer desired for binding must be specified.

Returns

components [ComponentSet]

The generated components. Contains the bidirectional binding Rule

and optionally three Parameters if klist was given as numbers.

pysb.macros.catalyze_one_step(enzyme, substrate, product, kf)
Generate the one-step catalytic reaction E + S >> E + P.

Parameters
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enzyme, substrate, product [Monomer or MonomerPattern] E, S and P in the above reac-
tion.

kf [a Parameter or a number] Forward rate constant for the reaction. If a Parameter is passed,
it will be used directly in the generated Rules. If a number is passed, a Parameter will be
created with an automatically generated name based on the names and states of the en-
zyme, substrate and product and this parameter will be included at the end of the returned
component list.

Returns

components [ComponentSet] The generated components. Contains the unidirectional reac-
tion Rule and optionally the forward rate Parameter if klist was given as a number.

Notes

In this macro, there is no direct binding between enzyme and substrate, so binding sites do not have to be
specified. This represents an approximation for the case when the enzyme is operating in its linear range.
However, if catalysis is nevertheless contingent on the enzyme or substrate being unbound on some site, then
that information must be encoded in the MonomerPattern for the enzyme or substrate. See the examples, below.

Examples

Convert S to P by E:

Model()
Monomer('E', ['b'])
Monomer('S', ['b'])
Monomer('P')
catalyze_one_step(E, S, P, 1e-4)

If the ability of the enzyme E to catalyze this reaction is dependent on the site ‘b’ of E being unbound, then this
macro must be called as

catalyze_one_step(E(b=None), S, P, 1e-4)

and similarly if the substrate or product must be unbound.

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('E', ['b'])
Monomer('E', ['b'])
>>> Monomer('S', ['b'])
Monomer('S', ['b'])
>>> Monomer('P')
Monomer('P')
>>> catalyze_one_step(E, S, P, 1e-4)
ComponentSet([
Rule('one_step_E_S_to_E_P', E() + S() >> E() + P(), one_step_E_S_to_E_P_kf),
Parameter('one_step_E_S_to_E_P_kf', 0.0001),
])

pysb.macros.catalyze_one_step_reversible(enzyme, substrate, product, klist)
Create fwd and reverse rules for catalysis of the form:
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E + S -> E + P
P -> S

Parameters

enzyme, substrate, product [Monomer or MonomerPattern] E, S and P in the above reac-
tions.

klist [list of 2 Parameters or list of 2 numbers] A list containing the rate constant for catalysis
and the rate constant for the conversion of product back to substrate (in that order). If
Parameters are passed, they will be used directly in the generated Rules. If numbers
are passed, Parameters will be created with automatically generated names based on the
names and states of S1 and S2 and these parameters will be included at the end of the
returned component list.

Returns

components [ComponentSet] The generated components. Contains two rules (the single-step
catalysis rule and the product reversion rule) and optionally the two generated Parameter
objects if klist was given as numbers.

Notes

Calls the macro catalyze_one_step to generate the catalysis rule.

Examples

One-step, pseudo-first order conversion of S to P by E:

Model()
Monomer('E', ['b'])
Monomer('S', ['b'])
Monomer('P')
catalyze_one_step_reversible(E, S, P, [1e-1, 1e-4])

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('E', ['b'])
Monomer('E', ['b'])
>>> Monomer('S', ['b'])
Monomer('S', ['b'])
>>> Monomer('P')
Monomer('P')
>>> catalyze_one_step_reversible(E, S, P, [1e-1, 1e-4])
ComponentSet([
Rule('one_step_E_S_to_E_P', E() + S() >> E() + P(), one_step_E_S_to_E_P_kf),
Parameter('one_step_E_S_to_E_P_kf', 0.1),
Rule('reverse_P_to_S', P() >> S(), reverse_P_to_S_kr),
Parameter('reverse_P_to_S_kr', 0.0001),
])

pysb.macros.synthesize(species, ksynth)
Generate a reaction which synthesizes a species.
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Note that species must be “concrete”, i.e. the state of all sites in all of its monomers must be specified. No site
may be left unmentioned.

Parameters

species [Monomer, MonomerPattern or ComplexPattern] The species to synthesize. If a
Monomer, sites are considered as unbound and in their default state. If a pattern, must be
concrete.

ksynth [Parameters or number] Synthesis rate. If a Parameter is passed, it will be used di-
rectly in the generated Rule. If a number is passed, a Parameter will be created with an
automatically generated name based on the names and site states of the components of
species and this parameter will be included at the end of the returned component list.

Returns

components [ComponentSet] The generated components. Contains the unidirectional syn-
thesis Rule and optionally a Parameter if ksynth was given as a number.

Examples

Synthesize A with site x unbound and site y in state ‘e’:

Model()
Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
synthesize(A(x=None, y='e'), 1e-4)

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
>>> synthesize(A(x=None, y='e'), 1e-4)
ComponentSet([
Rule('synthesize_Ae', None >> A(x=None, y='e'), synthesize_Ae_k),
Parameter('synthesize_Ae_k', 0.0001),
])

pysb.macros.degrade(species, kdeg)
Generate a reaction which degrades a species.

Note that species is not required to be “concrete”.

Parameters

species [Monomer, MonomerPattern or ComplexPattern] The species to synthesize. If a
Monomer, sites are considered as unbound and in their default state. If a pattern, must be
concrete.

kdeg [Parameters or number] Degradation rate. If a Parameter is passed, it will be used
directly in the generated Rule. If a number is passed, a Parameter will be created with an
automatically generated name based on the names and site states of the components of
species and this parameter will be included at the end of the returned component list.

Returns

components [ComponentSet] The generated components. Contains the unidirectional degra-
dation Rule and optionally a Parameter if ksynth was given as a number.
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Examples

Degrade all B, even bound species:

Model()
Monomer('B', ['x'])
degrade(B(), 1e-6)

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('B', ['x'])
Monomer('B', ['x'])
>>> degrade(B(), 1e-6)
ComponentSet([
Rule('degrade_B', B() >> None, degrade_B_k),
Parameter('degrade_B_k', 1e-06),
])

pysb.macros.synthesize_degrade_table(table)
Generate a table of synthesis and degradation reactions.

Given a list of species, calls the synthesize and degrade macros on each one. The species and the parameter
values are passed as a list of lists (i.e. a table) with each inner list consisting of the species, forward and reverse
rates (in that order).

Each species’ associated pair of rates may be either Parameters or numbers. If Parameters are passed, they will
be used directly in the generated Rules. If numbers are passed, Parameters will be created with automatically
generated names based on the names and states of the relevant species and these parameters will be included in
the returned component list. To omit any individual reaction, pass None in place of the corresponding parameter.

Note that any species with a non-None synthesis rate must be “concrete”.

Parameters

table [list of lists] Table of species and rates, as described above.

Returns

components [ComponentSet] The generated components. Contains the unidirectional syn-
thesis and degradation Rules and optionally the Parameters for any rates given as num-
bers.

Examples

Specify synthesis and degradation reactions for A and B in a table:

Model()
Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
Monomer('B', ['x'])
synthesize_degrade_table([[A(x=None, y='e'), 1e-4, 1e-6],

[B(), None, 1e-7]])

Execution:
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>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
Monomer('A', ['x', 'y'], {'y': ['e', 'f']})
>>> Monomer('B', ['x'])
Monomer('B', ['x'])
>>> synthesize_degrade_table([[A(x=None, y='e'), 1e-4, 1e-6],
... [B(), None, 1e-7]])
ComponentSet([

Rule('synthesize_Ae', None >> A(x=None, y='e'), synthesize_Ae_k),
Parameter('synthesize_Ae_k', 0.0001),
Rule('degrade_Ae', A(x=None, y='e') >> None, degrade_Ae_k),
Parameter('degrade_Ae_k', 1e-06),
Rule('degrade_B', B() >> None, degrade_B_k),
Parameter('degrade_B_k', 1e-07),
])

pysb.macros.assemble_pore_sequential(subunit, site1, site2, max_size, ktable)
Generate rules to assemble a circular homomeric pore sequentially.

The pore species are created by sequential addition of subunit monomers, i.e. larger oligomeric species never
fuse together. The pore structure is defined by the pore_species macro.

Parameters

subunit [Monomer or MonomerPattern] The subunit of which the pore is composed.

site1, site2 [string] The names of the sites where one copy of subunit binds to the next.

max_size [integer] The maximum number of subunits in the pore.

ktable [list of lists of Parameters or numbers] Table of forward and reverse rate constants for
the assembly steps. The outer list must be of length max_size - 1, and the inner lists must
all be of length 2. In the outer list, the first element corresponds to the first assembly step
in which two monomeric subunits bind to form a 2-subunit complex, and the last element
corresponds to the final step in which the max_size‘th subunit is added. Each inner list
contains the forward and reverse rate constants (in that order) for the corresponding as-
sembly reaction, and each of these pairs must comprise solely Parameter objects or solely
numbers (never one of each). If Parameters are passed, they will be used directly in the
generated Rules. If numbers are passed, Parameters will be created with automatically
generated names based on ‘subunit, site1, site2 and the pore sizes and these parameters
will be included at the end of the returned component list.

Examples

Assemble a three-membered pore by sequential addition of monomers, with the same forward/reverse rates for
monomer-monomer and monomer-dimer interactions:

Model()
Monomer('Unit', ['p1', 'p2'])
assemble_pore_sequential(Unit, 'p1', 'p2', 3, [[1e-4, 1e-1]] * 2)

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>

(continues on next page)
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>>> Monomer('Unit', ['p1', 'p2'])
Monomer('Unit', ['p1', 'p2'])
>>> assemble_pore_sequential(Unit, 'p1', 'p2', 3, [[1e-4, 1e-1]] * 2)
ComponentSet([
Rule('assemble_pore_sequential_Unit_2',

Unit(p1=None, p2=None) + Unit(p1=None, p2=None) |
Unit(p1=None, p2=1) % Unit(p1=1, p2=None),

assemble_pore_sequential_Unit_2_kf,
assemble_pore_sequential_Unit_2_kr),

Parameter('assemble_pore_sequential_Unit_2_kf', 0.0001),
Parameter('assemble_pore_sequential_Unit_2_kr', 0.1),
Rule('assemble_pore_sequential_Unit_3',

Unit(p1=None, p2=None) + Unit(p1=None, p2=1) % Unit(p1=1, p2=None) |
MatchOnce(Unit(p1=3, p2=1) % Unit(p1=1, p2=2) % Unit(p1=2, p2=3)),

assemble_pore_sequential_Unit_3_kf,
assemble_pore_sequential_Unit_3_kr),

Parameter('assemble_pore_sequential_Unit_3_kf', 0.0001),
Parameter('assemble_pore_sequential_Unit_3_kr', 0.1),
])

pysb.macros.pore_transport(subunit, sp_site1, sp_site2, sc_site, min_size, max_size, csource, c_site,
cdest, ktable)

Generate rules to transport cargo through a circular homomeric pore.

The pore structure is defined by the pore_species macro – subunit monomers bind to each other from sp_site1
to sp_site2 to form a closed ring. The transport reaction is modeled as a catalytic process of the form pore +
csource | pore:csource >> pore + cdest

Parameters

subunit [Monomer or MonomerPattern] Subunit of which the pore is composed.

sp_site1, sp_site2 [string] Names of the sites where one copy of subunit binds to the next.

sc_site [string] Name of the site on subunit where it binds to the cargo csource.

min_size, max_size [integer] Minimum and maximum number of subunits in the pore at
which transport will occur.

csource [Monomer or MonomerPattern] Cargo “source”, i.e. the entity to be transported.

c_site [string] Name of the site on csource where it binds to subunit.

cdest [Monomer or MonomerPattern] Cargo “destination”, i.e. the resulting state after the
transport event.

ktable [list of lists of Parameters or numbers] Table of forward, reverse and catalytic rate
constants for the transport reactions. The outer list must be of length max_size - min_size
+ 1, and the inner lists must all be of length 3. In the outer list, the first element corre-
sponds to the transport through the pore of size min_size and the last element to that of
size max_size. Each inner list contains the forward, reverse and catalytic rate constants
(in that order) for the corresponding transport reaction, and each of these pairs must com-
prise solely Parameter objects or solely numbers (never some of each). If Parameters
are passed, they will be used directly in the generated Rules. If numbers are passed, Pa-
rameters will be created with automatically generated names based on the subunit, the
pore size and the cargo, and these parameters will be included at the end of the returned
component list.
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Examples

Specify that a three-membered pore is capable of transporting cargo from the mitochondria to the cytoplasm:

Model()
Monomer('Unit', ['p1', 'p2', 'sc_site'])
Monomer('Cargo', ['c_site', 'loc'], {'loc':['mito', 'cyto']})
pore_transport(Unit, 'p1', 'p2', 'sc_site', 3, 3,

Cargo(loc='mito'), 'c_site', Cargo(loc='cyto'),
[[1e-4, 1e-1, 1]])

Generates two rules–one (reversible) binding rule and one transport rule–and the three associated parameters.

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('Unit', ['p1', 'p2', 'sc_site'])
Monomer('Unit', ['p1', 'p2', 'sc_site'])
>>> Monomer('Cargo', ['c_site', 'loc'], {'loc':['mito', 'cyto']})
Monomer('Cargo', ['c_site', 'loc'], {'loc': ['mito', 'cyto']})
>>> pore_transport(Unit, 'p1', 'p2', 'sc_site', 3, 3,
... Cargo(loc='mito'), 'c_site', Cargo(loc='cyto'),
... [[1e-4, 1e-1, 1]])
ComponentSet([
Rule('pore_transport_complex_Unit_3_Cargomito',

MatchOnce(Unit(p1=3, p2=1, sc_site=None) %
Unit(p1=1, p2=2, sc_site=None) %
Unit(p1=2, p2=3, sc_site=None)) +
Cargo(c_site=None, loc='mito') |

MatchOnce(Unit(p1=3, p2=1, sc_site=4) %
Unit(p1=1, p2=2, sc_site=None) %
Unit(p1=2, p2=3, sc_site=None) %
Cargo(c_site=4, loc='mito')),

pore_transport_complex_Unit_3_Cargomito_kf,
pore_transport_complex_Unit_3_Cargomito_kr),

Parameter('pore_transport_complex_Unit_3_Cargomito_kf', 0.0001),
Parameter('pore_transport_complex_Unit_3_Cargomito_kr', 0.1),
Rule('pore_transport_dissociate_Unit_3_Cargocyto',

MatchOnce(Unit(p1=3, p2=1, sc_site=4) %
Unit(p1=1, p2=2, sc_site=None) %
Unit(p1=2, p2=3, sc_site=None) %
Cargo(c_site=4, loc='mito')) >>

MatchOnce(Unit(p1=3, p2=1, sc_site=None) %
Unit(p1=1, p2=2, sc_site=None) %
Unit(p1=2, p2=3, sc_site=None)) +
Cargo(c_site=None, loc='cyto'),

pore_transport_dissociate_Unit_3_Cargocyto_kc),
Parameter('pore_transport_dissociate_Unit_3_Cargocyto_kc', 1.0),
])

pysb.macros.pore_bind(subunit, sp_site1, sp_site2, sc_site, size, cargo, c_site, klist)
Generate rules to bind a monomer to a circular homomeric pore.

The pore structure is defined by the pore_species macro – subunit monomers bind to each other from sp_site1
to sp_site2 to form a closed ring. The binding reaction takes the form pore + cargo | pore:cargo.

Parameters
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subunit [Monomer or MonomerPattern] Subunit of which the pore is composed.

sp_site1, sp_site2 [string] Names of the sites where one copy of subunit binds to the next.

sc_site [string] Name of the site on subunit where it binds to the cargo cargo.

size [integer] Number of subunits in the pore at which binding will occur.

cargo [Monomer or MonomerPattern] Cargo that binds to the pore complex.

c_site [string] Name of the site on cargo where it binds to subunit.

klist [list of Parameters or numbers] List containing forward and reverse rate constants for the
binding reaction (in that order). Rate constants should either be both Parameter objects or
both numbers. If Parameters are passed, they will be used directly in the generated Rules.
If numbers are passed, Parameters will be created with automatically generated names
based on the subunit, the pore size and the cargo, and these parameters will be included
at the end of the returned component list.

Examples

Specify that a cargo molecule can bind reversibly to a 3-membered pore:

Model()
Monomer('Unit', ['p1', 'p2', 'sc_site'])
Monomer('Cargo', ['c_site'])
pore_bind(Unit, 'p1', 'p2', 'sc_site', 3,

Cargo(), 'c_site', [1e-4, 1e-1, 1])

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('Unit', ['p1', 'p2', 'sc_site'])
Monomer('Unit', ['p1', 'p2', 'sc_site'])
>>> Monomer('Cargo', ['c_site'])
Monomer('Cargo', ['c_site'])
>>> pore_bind(Unit, 'p1', 'p2', 'sc_site', 3,
... Cargo(), 'c_site', [1e-4, 1e-1, 1])
ComponentSet([
Rule('pore_bind_Unit_3_Cargo',

MatchOnce(Unit(p1=3, p2=1, sc_site=None) %
Unit(p1=1, p2=2, sc_site=None) %
Unit(p1=2, p2=3, sc_site=None)) +
Cargo(c_site=None) |

MatchOnce(Unit(p1=3, p2=1, sc_site=4) %
Unit(p1=1, p2=2, sc_site=None) %
Unit(p1=2, p2=3, sc_site=None) %
Cargo(c_site=4)),

pore_bind_Unit_3_Cargo_kf, pore_bind_Unit_3_Cargo_kr),
Parameter('pore_bind_Unit_3_Cargo_kf', 0.0001),
Parameter('pore_bind_Unit_3_Cargo_kr', 0.1),
])

pysb.macros.assemble_chain_sequential_base(base, basesite, subunit, site1, site2, max_size,
ktable, comp=1)

Generate rules to assemble a homomeric chain sequentially onto a base complex (only the subunit creates re-
peating chain, not the base).
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The chain species are created by sequential addition of subunit monomers. The chain structure is defined by the
pore_species_base macro.

Parameters

base [Monomer or MonomerPattern] The base complex to which the chain is attached.

basesite [string] The name of the site on the complex to which chain attaches.

subunit [Monomer or MonomerPattern] The subunit of which the chain is composed.

site1, site2 [string] The names of the sites where one copy of subunit binds to the next; the
first will also be the site where the first subunit binds the base.

max_size [integer] The maximum number of subunits in the chain.

ktable [list of lists of Parameters or numbers] Table of forward and reverse rate constants for
the assembly steps. The outer list must be of length max_size + 1, and the inner lists must
all be of length 2. In the outer list, the first element corresponds to the first assembly step
in which the complex binds the first subunit. The next corresponds to a bound subunit
binding to form a 2-subunit complex, and the last element corresponds to the final step in
which the max_size‘th subunit is added. Each inner list contains the forward and reverse
rate constants (in that order) for the corresponding assembly reaction, and each of these
pairs must comprise solely Parameter objects or solely numbers (never one of each). If
Parameters are passed, they will be used directly in the generated Rules. If numbers
are passed, Parameters will be created with automatically generated names based on
‘subunit, site1, site2 and the chain sizes and these parameters will be included at the end
of the returned component list.

comp [optional; a ComplexPattern to which the base molecule is attached.]

Examples

Assemble a three-membered chain by sequential addition of monomers to a base, which is in turn attached to a
complex, with the same forward/reverse rates for monomer-monomer and monomer-dimer interactions:

Model()
Monomer('Base', ['b1', 'b2'])
Monomer('Unit', ['p1', 'p2'])
Monomer('Complex1', ['s1'])
Monomer('Complex2', ['s1', s2'])
assemble_chain_sequential(Base(b2=ANY), 'b1', Unit, 'p1', 'p2', 3, [[1e-4, 1e-1]]
→˓* 2, Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY))

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('Base', ['b1', 'b2'])
Monomer('Base', ['b1', 'b2'])
>>> Monomer('Unit', ['p1', 'p2'])
Monomer('Unit', ['p1', 'p2'])
>>> Monomer('Complex1', ['s1'])
Monomer('Complex1', ['s1'])
>>> Monomer('Complex2', ['s1', 's2'])
Monomer('Complex2', ['s1', 's2'])
>>> assemble_chain_sequential_base(Base(b2=ANY), 'b1', Unit, 'p1', 'p2', 3, [[1e-
→˓4, 1e-1]] * 2, Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY))

(continues on next page)
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ComponentSet([
Rule('assemble_chain_sequential_base_Unit_2', Unit(p1=None, p2=None) +
→˓Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY) % Base(b1=1, b2=ANY) % Unit(p1=1,
→˓p2=None) | Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY) % Base(b1=1, b2=ANY) %
→˓Unit(p1=1, p2=2) % Unit(p1=2, p2=None), assemble_chain_sequential_base_Unit_2_
→˓kf, assemble_chain_sequential_base_Unit_2_kr),
Parameter('assemble_chain_sequential_base_Unit_2_kf', 0.0001),
Parameter('assemble_chain_sequential_base_Unit_2_kr', 0.1),
Rule('assemble_chain_sequential_base_Unit_3', Unit(p1=None, p2=None) +
→˓Complex1(s1=ANY) % Complex2(s1=ANY, s2=ANY) % Base(b1=1, b2=ANY) % Unit(p1=1,
→˓p2=2) % Unit(p1=2, p2=None) | MatchOnce(Complex1(s1=ANY) % Complex2(s1=ANY,
→˓s2=ANY) % Base(b1=1, b2=ANY) % Unit(p1=1, p2=2) % Unit(p1=2, p2=3) % Unit(p1=3,
→˓p2=None)), assemble_chain_sequential_base_Unit_3_kf, assemble_chain_sequential_
→˓base_Unit_3_kr),
Parameter('assemble_chain_sequential_base_Unit_3_kf', 0.0001),
Parameter('assemble_chain_sequential_base_Unit_3_kr', 0.1),
])

pysb.macros.bind_complex(s1, site1, s2, site2, klist, m1=None, m2=None)
Generate the reversible binding reaction S1 + S2 | S1:S2, with optional complexes attached to either
S1 (C1:S1 + S2 | C1:S1:S2), S2 (S1 + C2:S2 | C2:S2:S1), or both (C1:S1 + C2:S2 |
C1:S1:S2:C2).

Parameters

s1, s2 [Monomer, MonomerPattern, or ComplexPattern] Monomers or complexes participat-
ing in the binding reaction.

site1, site2 [string] The names of the sites on s1 and s2 used for binding.

klist [list of 2 Parameters or list of 2 numbers] Forward and reverse rate constants (in that or-
der). If Parameters are passed, they will be used directly in the generated Rules. If num-
bers are passed, Parameters will be created with automatically generated names based on
the names and states of S1 and S2 and these parameters will be included at the end of the
returned component list.

m1, m2 [Monomer or MonomerPattern] If s1 or s2 binding site is present in multiple
monomers within a complex, the specific monomer desired for binding must be speci-
fied.

Returns

components [ComponentSet] The generated components. Contains the bidirectional binding
Rule and optionally two Parameters if klist was given as numbers.

Examples

Binding between A:B and C:D:

>>> Model() # doctest:+ELLIPSIS
<Model '_interactive_' ...>
>>> Monomer('A', ['a', 'b'])
Monomer('A', ['a', 'b'])
>>> Monomer('B', ['c', 'd'])
Monomer('B', ['c', 'd'])
>>> Monomer('C', ['e', 'f'])
Monomer('C', ['e', 'f'])

(continues on next page)

4.7. Macros (pysb.macros) 81



pysb Documentation, Release 0+untagged.134.gd8a008d.dirty

(continued from previous page)

>>> Monomer('D', ['g', 'h'])
Monomer('D', ['g', 'h'])
>>> bind_complex(A(a=1) % B(c=1), 'b', C(e=2) % D(g=2), 'h', [1e-4,
→˓1e-1]) #doctest:+NORMALIZE_WHITESPACE
ComponentSet([
Rule('bind_AB_DC', A(a=1, b=None) % B(c=1) + D(g=3, h=None) % C(e=3)
| A(a=1, b=50) % B(c=1) % D(g=3, h=50) % C(e=3), bind_AB_DC_kf,
bind_AB_DC_kr),

Parameter('bind_AB_DC_kf', 0.0001),
Parameter('bind_AB_DC_kr', 0.1),
])

Execution:

>>> Model() # doctest:+ELLIPSIS
<Model '_interactive_' ...>
>>> Monomer('A', ['a', 'b'])
Monomer('A', ['a', 'b'])
>>> Monomer('B', ['c', 'd'])
Monomer('B', ['c', 'd'])
>>> Monomer('C', ['e', 'f'])
Monomer('C', ['e', 'f'])
>>> Monomer('D', ['g', 'h'])
Monomer('D', ['g', 'h'])
>>> bind(A, 'a', B, 'c', [1e4, 1e-1]) #doctest:+NORMALIZE_WHITESPACE
ComponentSet([
Rule('bind_A_B',
A(a=None) + B(c=None) | A(a=1) % B(c=1),
bind_A_B_kf, bind_A_B_kr),

Parameter('bind_A_B_kf', 10000.0),
Parameter('bind_A_B_kr', 0.1),
])
>>> bind(C, 'e', D, 'g', [1e4, 1e-1]) #doctest:+NORMALIZE_WHITESPACE
ComponentSet([
Rule('bind_C_D',
C(e=None) + D(g=None) | C(e=1) % D(g=1),
bind_C_D_kf, bind_C_D_kr),

Parameter('bind_C_D_kf', 10000.0),
Parameter('bind_C_D_kr', 0.1),
])
>>> bind_complex(A(a=1) % B(c=1), 'b', C(e=2) % D(g=2), 'h', [1e-4,
→˓1e-1]) #doctest:+NORMALIZE_WHITESPACE
ComponentSet([
Rule('bind_AB_DC',
A(a=1, b=None) % B(c=1) + D(g=3, h=None) % C(e=3) | A(a=1,
b=50) % B(c=1) % D(g=3, h=50) % C(e=3),
bind_AB_DC_kf, bind_AB_DC_kr),

Parameter('bind_AB_DC_kf', 0.0001),
Parameter('bind_AB_DC_kr', 0.1),
])

pysb.macros.bind_table_complex(bindtable, row_site, col_site, m1=None, m2=None, kf=None)
Generate a table of reversible binding reactions when either the row or column species (or both) have a complex
bound to them.

Given two lists of species R and C (which can be complexes or monomers), calls the bind_complex macro on
each pairwise combination (R[i], C[j]). The species lists and the parameter values are passed as a list of lists (i.e.
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a table) with elements of R passed as the “row headers”, elements of C as the “column headers”, and forward /
reverse rate pairs (in that order) as tuples in the “cells”. For example with two elements in each of R and C, the
table would appear as follows (note that the first row has one fewer element than the subsequent rows):

[[ C1, C2],
[R1, (1e-4, 1e-1), (2e-4, 2e-1)],
[R2, (3e-4, 3e-1), (4e-4, 4e-1)]]

Each parameter tuple may contain Parameters or numbers. If Parameters are passed, they will be used directly
in the generated Rules. If numbers are passed, Parameters will be created with automatically generated names
based on the names and states of the relevant species and these parameters will be included at the end of the
returned component list. To omit any individual reaction, pass None in place of the corresponding parameter
tuple.

Alternately, single kd values (dissociation constant, kr/kf) may be specified instead of (kf, kr) tuples. If kds
are used, a single shared kf Parameter or number must be passed as an extra kf argument. kr values for each
binding reaction will be calculated as kd*kf. It is important to remember that the forward rate constant is a
single parameter shared across the entire bind table, as this may have implications for parameter fitting.

Parameters

bindtable [list of lists] Table of reactants and rates, as described above.

row_site, col_site [string] The names of the sites on the elements of R and C, respectively,
used for binding.

m1 [Monomer or MonomerPattern, optional] Monomer in row complex for binding. Must be
specified if there are multiple monomers that have the row_site within a complex.

m2 [Monomer or MonomerPattern, optional] Monomer in column complex for binding. Must
be specified if there are multiple monomers that have the col_site within a complex.

kf [Parameter or number, optional] If the “cells” in bindtable are given as single kd values,
this is the shared kf used to calculate the kr values.

Returns

components [ComponentSet] The generated components. Contains the bidirectional binding
Rules and optionally the Parameters for any parameters given as numbers.

Examples

Binding table for two species types (R and C, which can be complexes or monomers):

Model()
Monomer('R1', ['x', 'c1'])
Monomer('R2', ['x', 'c1'])
Monomer('C1', ['y', 'c2'])
Monomer('C2', ['y', 'c2'])
bind(C1(y=None), 'c2', C1(y=None), 'c2', (1e-3, 1e-2))
bind(R1(x=None), 'c1', R2(x=None), 'c1', (1e-3, 1e-2))
bind_table_complex([[ C1(c2=1, y=None)%C1(c2=1), C2],

[R1()%R2(), (1e-4, 1e-1), (2e-4, 2e-1)],
[R2, (3e-4, 3e-1), None]],
'x', 'y', m1=R1(), m2=C1(y=None, c2=1))

Execution:
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>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('R1', ['x', 'c1'])
Monomer('R1', ['x', 'c1'])
>>> Monomer('R2', ['x', 'c1'])
Monomer('R2', ['x', 'c1'])
>>> Monomer('C1', ['y', 'c2'])
Monomer('C1', ['y', 'c2'])
>>> Monomer('C2', ['y', 'c2'])
Monomer('C2', ['y', 'c2'])
>>> bind(C1(y=None), 'c2', C1(y=None), 'c2', (1e-3, 1e-2))
ComponentSet([
Rule('bind_C1_C1', C1(y=None, c2=None) + C1(y=None, c2=None) | C1(y=None, c2=1)
→˓% C1(y=None, c2=1), bind_C1_C1_kf, bind_C1_C1_kr),
Parameter('bind_C1_C1_kf', 0.001),
Parameter('bind_C1_C1_kr', 0.01),
])
>>> bind(R1(x=None), 'c1', R2(x=None), 'c1', (1e-3, 1e-2))
ComponentSet([
Rule('bind_R1_R2', R1(x=None, c1=None) + R2(x=None, c1=None) | R1(x=None, c1=1)
→˓% R2(x=None, c1=1), bind_R1_R2_kf, bind_R1_R2_kr),
Parameter('bind_R1_R2_kf', 0.001),
Parameter('bind_R1_R2_kr', 0.01),
])
>>> bind_table_complex([[ C1(c2=1, y=None)%C1(c2=1), C2],
... [R1()%R2(), (1e-4, 1e-1),
→˓(2e-4, 2e-1)],
... [R2, (3e-4, 3e-1),
→˓None]],
... 'x', 'y', m1=R1(), m2=C1(y=None, c2=1))
ComponentSet([
Rule('bind_R1R2_C1C1', R1(x=None) % R2() + C1(y=None, c2=1) % C1(c2=1) | R1(x=50)
→˓% R2() % C1(y=50, c2=1) % C1(c2=1), bind_R1R2_C1C1_kf, bind_R1R2_C1C1_kr),
Parameter('bind_R1R2_C1C1_kf', 0.0001),
Parameter('bind_R1R2_C1C1_kr', 0.1),
Rule('bind_R1R2_C2', R1(x=None) % R2() + C2(y=None) | R1(x=50) % R2() % C2(y=50),
→˓bind_R1R2_C2_kf, bind_R1R2_C2_kr),
Parameter('bind_R1R2_C2_kf', 0.0002),
Parameter('bind_R1R2_C2_kr', 0.2),
Rule('bind_C1C1_R2', C1(y=None, c2=1) % C1(c2=1) + R2(x=None) | C1(y=50, c2=1) %
→˓C1(c2=1) % R2(x=50), bind_C1C1_R2_kf, bind_C1C1_R2_kr),
Parameter('bind_C1C1_R2_kf', 0.0003),
Parameter('bind_C1C1_R2_kr', 0.3),
])

pysb.macros.drug_binding(drug, d_site, substrate, s_site, t_action, klist)
Generate the reversible binding reaction DRUG + SUBSTRATE | DRUG:SUBSTRATE that only gets triggered
when the simulation reaches the time point t_action. The idea of this macro is to mimic experimental settings
when a reaction is started and later on some kind of perturbation is added to the system.

Warning: This macro only works when a model is simulated using a deterministic simulator.

Parameters

drug, substrate: Monomer or MonomerPattern Monomers participating in the binding re-
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action.

d_site, s_site: string The names of the sites on s1 and s2 used for binding.

t_action: float Time of the simulation at which the drug is added

klist: list of 2 Parameters or list of 2 numbers Forward and reverse rate constants (in that
order). If Parameters are passed, they will be used directly in the generated Rules. If num-
bers are passed, Parameters will be created with automatically generated names based on
the names and states of S1 and S2 and these parameters will be included at the end of the
returned component list.

Returns

components [ComponentSet] The generated components. Contains the bidirectional binding
Rule, the time monomer, Parameter rate of time creation, Rule to simulate passing of
time, time Observable, two Expression rates that take into account when the interaction
between the drug and that substrate start to occur and optionally two Parameters if klist
was given as numbers as numbers

Examples

Binding between drug and substrate:: Model() Monomer(‘drug’, [‘b’]) Monomer(‘substrate’, [‘b’])
drug_binding(drug(), ‘b’, substrate(), ‘b’, 10, [2,4])

Execution:

>>> Model()
<Model '_interactive_' (monomers: 0, rules: 0, parameters: 0, expressions: 0,
→˓compartments: 0) at ...>
>>> Monomer('drug', ['b'])
Monomer('drug', ['b'])
>>> Monomer('substrate', ['b'])
Monomer('substrate', ['b'])
>>> drug_binding(drug(), 'b', substrate(), 'b', 10, [0.1, 0.01])
ComponentSet([
Rule('bind_drug_substrate_to_drugsubstrate', drug(b=None) + substrate(b=None) |
→˓drug(b=1) % substrate(b=1), kf_expr_drug_substrate, kr_expr_drug_substrate),
Parameter('kf_drug_substrate', 0.1),
Parameter('kr_drug_substrate', 0.01),
Rule('synthesize___t', None >> __t(), __k_t),
Monomer('__t'),
Parameter('__k_t', 1.0),
Observable('t', __t()),
Expression('kf_expr_drug_substrate', Piecewise((kf_drug_substrate, t > 10), (0,
→˓True))),
Expression('kr_expr_drug_substrate', Piecewise((kr_drug_substrate, t > 10), (0,
→˓True))),
])

4.8 Pattern matching against PySB models (pysb.pattern)

class pysb.pattern.FilterPredicate
Base class for building predicates

For use with pysb.core.ComponentSet.filter().
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class pysb.pattern.Function(regex)
Predicate to filter a ComponentSet by function where components are defined

class pysb.pattern.Module(regex)
Predicate to filter a ComponentSet by module where components are defined

class pysb.pattern.Name(regex)
Predicate to filter a ComponentSet by regular expression name search

Note that this uses re.search which matches anywhere in the component name. Use ^ to explicitly anchor the
match to the beginning.

class pysb.pattern.Pattern(pattern)
Predicate to filter a ComponentSet by matching a ComplexPattern

See pysb.core.ComponentSet.filter() for examples.

class pysb.pattern.ReactionPatternMatcher(model, species_pattern_matcher=None)
Match a pattern against a model’s reactions list

Methods are provided to match against reaction reactants, products or both. Searches can be Monomers,
MonomerPatterns, ComplexPatterns or ReactionPatterns.

Examples

Create a PatternMatcher for the EARM 1.0 model

>>> from pysb.examples.earm_1_0 import model
>>> from pysb.bng import generate_equations
>>> from pysb.pattern import ReactionPatternMatcher
>>> generate_equations(model)
>>> rpm = ReactionPatternMatcher(model)

Assign some monomers to variables (only needed when importing a model instead of defining one interactively)

>>> AMito, mCytoC, mSmac, cSmac = [model.monomers[m] for m in
→˓ ('AMito', 'mCytoC', 'mSmac', 'cSmac')]

Search using a Monomer

>>> rpm.match_products(mSmac) # doctest:+NORMALIZE_WHITESPACE
[Rxn (reversible):

Reactants: {'__s15': mSmac(b=None), '__s45': AMito(b=None)}
Products: {'__s47': AMito(b=1) % mSmac(b=1)}
Rate: kf21*__s15*__s45 - kr21*__s47
Rules: [Rule('bind_mSmac_AMito', AMito(b=None) + mSmac(b=None) |

AMito(b=1) % mSmac(b=1), kf21, kr21)]]

Search using a MonomerPattern

>>> rpm.match_reactants(AMito(b=ANY)) # doctest:+NORMALIZE_WHITESPACE
[Rxn (one-way):

Reactants: {'__s46': AMito(b=1) % mCytoC(b=1)}
Products: {'__s45': AMito(b=None), '__s48': ACytoC(b=None)}
Rate: kc20*__s46
Rules: [Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >>

AMito(b=None) + ACytoC(b=None), kc20)],
Rxn (one-way):

Reactants: {'__s47': AMito(b=1) % mSmac(b=1)}

(continues on next page)
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Products: {'__s45': AMito(b=None), '__s49': ASmac(b=None)}
Rate: kc21*__s47
Rules: [Rule('produce_ASmac_via_AMito', AMito(b=1) % mSmac(b=1) >>

AMito(b=None) + ASmac(b=None), kc21)]]

>>> rpm.match_products(cSmac(b=ANY)) # doctest:+NORMALIZE_WHITESPACE
[Rxn (reversible):

Reactants: {'__s7': XIAP(b=None), '__s51': cSmac(b=None)}
Products: {'__s53': XIAP(b=1) % cSmac(b=1)}
Rate: kf28*__s51*__s7 - kr28*__s53
Rules: [Rule('inhibit_cSmac_by_XIAP', cSmac(b=None) + XIAP(b=None) |

cSmac(b=1) % XIAP(b=1), kf28, kr28)]]

Search using a ComplexPattern

>>> rpm.match_reactants(AMito() % mSmac()) # doctest:+NORMALIZE_WHITESPACE
[Rxn (one-way):

Reactants: {'__s47': AMito(b=1) % mSmac(b=1)}
Products: {'__s45': AMito(b=None), '__s49': ASmac(b=None)}
Rate: kc21*__s47
Rules: [Rule('produce_ASmac_via_AMito', AMito(b=1) % mSmac(b=1) >>

AMito(b=None) + ASmac(b=None), kc21)]]

>>> rpm.match_reactions(AMito(b=3) % mCytoC(b=3)) # doctest:+NORMALIZE_
→˓WHITESPACE
[Rxn (reversible):

Reactants: {'__s14': mCytoC(b=None), '__s45': AMito(b=None)}
Products: {'__s46': AMito(b=1) % mCytoC(b=1)}
Rate: kf20*__s14*__s45 - kr20*__s46
Rules: [Rule('bind_mCytoC_AMito', AMito(b=None) + mCytoC(b=None) |

AMito(b=1) % mCytoC(b=1), kf20, kr20)],
Rxn (one-way):

Reactants: {'__s46': AMito(b=1) % mCytoC(b=1)}
Products: {'__s45': AMito(b=None), '__s48': ACytoC(b=None)}
Rate: kc20*__s46
Rules: [Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >>

AMito(b=None) + ACytoC(b=None), kc20)]]

class pysb.pattern.RulePatternMatcher(model)
Match a pattern against a model’s species list

Methods are provided to match against rule reactants, products or both. Searches can be Monomers, Monomer-
Patterns, ComplexPatterns or ReactionPatterns.

Examples

Create a PatternMatcher for the EARM 1.0 model

>>> from pysb.examples.earm_1_0 import model
>>> from pysb.pattern import RulePatternMatcher
>>> rpm = RulePatternMatcher(model)

Assign some monomers to variables (only needed when importing a model instead of defining one interactively)
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>>> AMito, mCytoC, mSmac, cSmac = [model.monomers[m] for m in ('AMito',
→˓'mCytoC', 'mSmac', 'cSmac')]

Search using a Monomer

>>> rpm.match_reactants(AMito) # doctest:+NORMALIZE_WHITESPACE
[Rule('bind_mCytoC_AMito', AMito(b=None) + mCytoC(b=None) |

AMito(b=1) % mCytoC(b=1), kf20, kr20),
Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >>

AMito(b=None) + ACytoC(b=None), kc20),
Rule('bind_mSmac_AMito', AMito(b=None) + mSmac(b=None) |

AMito(b=1) % mSmac(b=1), kf21, kr21),
Rule('produce_ASmac_via_AMito', AMito(b=1) % mSmac(b=1) >>

AMito(b=None) + ASmac(b=None), kc21)]

>>> rpm.match_products(mSmac) # doctest:+NORMALIZE_WHITESPACE
[Rule('bind_mSmac_AMito', AMito(b=None) + mSmac(b=None) |

AMito(b=1) % mSmac(b=1), kf21, kr21)]

Search using a MonomerPattern

>>> rpm.match_reactants(AMito(b=1)) # doctest:+NORMALIZE_WHITESPACE
[Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >>

AMito(b=None) + ACytoC(b=None), kc20),
Rule('produce_ASmac_via_AMito', AMito(b=1) % mSmac(b=1) >>

AMito(b=None) + ASmac(b=None), kc21)]

>>> rpm.match_rules(cSmac(b=1)) # doctest:+NORMALIZE_WHITESPACE
[Rule('inhibit_cSmac_by_XIAP', cSmac(b=None) + XIAP(b=None) |

cSmac(b=1) % XIAP(b=1), kf28, kr28)]

Search using a ComplexPattern

>>> rpm.match_reactants(AMito() % mSmac()) # doctest:+NORMALIZE_WHITESPACE
[Rule('produce_ASmac_via_AMito', AMito(b=1) % mSmac(b=1) >>

AMito(b=None) + ASmac(b=None), kc21)]

>>> rpm.match_rules(AMito(b=1) % mCytoC(b=1)) # doctest:+NORMALIZE_
→˓WHITESPACE
[Rule('bind_mCytoC_AMito', AMito(b=None) + mCytoC(b=None) |

AMito(b=1) % mCytoC(b=1), kf20, kr20),
Rule('produce_ACytoC_via_AMito', AMito(b=1) % mCytoC(b=1) >>

AMito(b=None) + ACytoC(b=None), kc20)]

Search using a ReactionPattern

>>> rpm.match_reactants(mCytoC() + mSmac())
[]

>>> rpm.match_reactants(AMito() + mCytoC()) # doctest:+NORMALIZE_WHITESPACE
[Rule('bind_mCytoC_AMito', AMito(b=None) + mCytoC(b=None) |

AMito(b=1) % mCytoC(b=1), kf20, kr20)]

class pysb.pattern.SpeciesPatternMatcher(model, species=None)
Match a pattern against a model’s species list
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Examples

Create a PatternMatcher for the EARM 1.0 model

>>> from pysb.examples.earm_1_0 import model
>>> from pysb.bng import generate_equations
>>> from pysb.pattern import SpeciesPatternMatcher
>>> from pysb import ANY, WILD, Model, Monomer, as_complex_pattern
>>> generate_equations(model)
>>> spm = SpeciesPatternMatcher(model)

Assign two monomers to variables (only needed when importing a model instead of defining one interactively)

>>> Bax4 = model.monomers['Bax4']
>>> Bcl2 = model.monomers['Bcl2']

Search using a Monomer

>>> spm.match(Bax4)
[Bax4(b=None), Bax4(b=1) % Bcl2(b=1), Bax4(b=1) % Mito(b=1)]
>>> spm.match(Bcl2) # doctest:+NORMALIZE_WHITESPACE
[Bax2(b=1) % Bcl2(b=1),
Bax4(b=1) % Bcl2(b=1),
Bcl2(b=None),
Bcl2(b=1) % MBax(b=1)]

Search using a MonomerPattern (ANY and WILD keywords can be used)

>>> spm.match(Bax4(b=WILD))
[Bax4(b=None), Bax4(b=1) % Bcl2(b=1), Bax4(b=1) % Mito(b=1)]
>>> spm.match(Bcl2(b=ANY))
[Bax2(b=1) % Bcl2(b=1), Bax4(b=1) % Bcl2(b=1), Bcl2(b=1) % MBax(b=1)]

Search using a ComplexPattern

>>> spm.match(Bax4(b=1) % Bcl2(b=1))
[Bax4(b=1) % Bcl2(b=1)]
>>> spm.match(Bax4() % Bcl2())
[Bax4(b=1) % Bcl2(b=1)]

Contrived example to test a site with both a bond and state defined

>>> model = Model(_export=False)
>>> A = Monomer('A', ['a'], {'a': ['u', 'p']}, _export=False)
>>> model.add_component(A)
>>> species = [
→˓A(a='u'), A(a=1)
→˓% A(a=1), A(a=('u', 1))
→˓% A(a=('u', 1)), A(a=('p', 1)) % A(a=(
→˓'p', 1)) ]
>>> model.species = [as_complex_pattern(sp) for sp in species]
>>> spm2 = SpeciesPatternMatcher(model)
>>> spm2.match(A()) # doctest:+NORMALIZE_WHITESPACE
[A(a='u'), A(a=1) % A(a=1), A(a=('u', 1)) % A(a=('u', 1)),
A(a=('p', 1)) % A(a=('p', 1))]
>>> spm2.match(A(a='u'))
[A(a='u')]
>>> spm2.match(A(a=('u', ANY)))

(continues on next page)
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[A(a=('u', 1)) % A(a=('u', 1))]
>>> spm2.match(A(a=('u', WILD)))
[A(a='u'), A(a=('u', 1)) % A(a=('u', 1))]

add_species(species, check_duplicate=True)
Add a species to the search list without adding to the model

Parameters

species [ComplexPattern] A concrete ComplexPattern (molecular species) to add to the
search list

check_duplicate [bool, optional] If True, check the species list to make sure the new
species is not already in the list

match(pattern, index=False, exact=False, counts=False)
Match a pattern against the list of species

Parameters

pattern: pysb.Monomer or pysb.MonomerPattern or pysb.ComplexPattern

index: bool If True, return species numerical index, rather than species itself

exact: bool Treat Match as exact equivalence, not a pattern match (i.e. must be concrete
if a MonomerPattern or ComplexPattern)

counts: bool If True, return match counts for the search pattern within each species.

Returns

list of pysb.ComplexPattern or list of int A list of species matching the pattern is re-
turned, unless index=True, in which case a list of the numerical indices of matching
species is returned instead

Examples

>>> from pysb.examples import earm_1_0
>>> from pysb.bng import generate_equations
>>> model = earm_1_0.model
>>> generate_equations(model)
>>> spm = SpeciesPatternMatcher(model)
>>> L = model.monomers['L']
>>> spm.match(L())
[L(b=None), L(b=1) % pR(b=1)]

rule_firing_species(rules_to_consider=None, include_reverse=True)
Return the species which match the reactants of a set of rules

Parameters

rules_to_consider: list of pysb.Rule or None A list of rules to use. If None, use all rules
in the model.

include_reverse: bool, optional For reversible rules, include species triggering the rule
in reverse

Returns
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collections.OrderedDict Dictionary of PySB rules whose reactants contain at least one
of the species in the model. Keys are PySB rules, values are a list of lists. Each outer
list corresponding to each ComplexPattern in the ReactantPattern (or ReactantPattern
and ProductPattern, if rule is reversible). Each inner list contains the list of species
matching the corresponding ComplexPattern.

Examples

>>> from pysb.examples import robertson
>>> from pysb.bng import generate_equations
>>> model = robertson.model
>>> generate_equations(model)
>>> spm = SpeciesPatternMatcher(model)

Get a list of species which fire each rule:

>>> spm.rule_firing_species() #doctest: +NORMALIZE_WHITESPACE
OrderedDict([(Rule('A_to_B', A() >> B(), k1), [[A()]]),
(Rule('BB_to_BC', B() + B() >> B() + C(), k2), [[B()], [B()]]),
(Rule('BC_to_AC', B() + C() >> A() + C(), k3), [[B()], [C()]])])

species_fired_by_reactant_pattern(reaction_pattern)
Get list of species matching a reactant pattern

Parameters

reaction_pattern: pysb.ReactionPattern

Returns

list of lists of pysb.ComplexPattern List of lists of species matching each ComplexPat-
tern in the ReactantPattern.

Examples

>>> from pysb.examples import bax_pore
>>> from pysb.bng import generate_equations
>>> model = bax_pore.model
>>> generate_equations(model)
>>> spm = SpeciesPatternMatcher(model)

Get a list of species which fire each rule:

>>> rxn_pat = model.rules['bax_dim'].reactant_pattern
>>> print(rxn_pat)
BAX(t1=None, t2=None) + BAX(t1=None, t2=None)

>>> spm.species_fired_by_reactant_pattern(rxn_pat) #doctest:
→˓+NORMALIZE_WHITESPACE
[[BAX(t1=None, t2=None, inh=None),

BAX(t1=None, t2=None, inh=1) % MCL1(b=1)],
[BAX(t1=None, t2=None, inh=None),

BAX(t1=None, t2=None, inh=1) % MCL1(b=1)]]

pysb.pattern.check_dangling_bonds(pattern)
Check for dangling bonds in a PySB ComplexPattern/ReactionPattern
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Raises a DanglingBondError if a dangling bond is found

pysb.pattern.get_bonds_in_pattern(pat)
Return the set of integer bond numbers used in a pattern

To return as a list (with duplicates), use get_half_bonds_in_pattern()

Parameters

pat [ComplexPattern, MonomerPattern, or None] A pattern from which bond numberings are
extracted

Returns

set Bond numbers used in the supplied pattern

Examples

>>> A = Monomer('A', ['b1', 'b2'], _export=False)
>>> get_bonds_in_pattern(A(b1=None, b2=None)) == set()
True
>>> get_bonds_in_pattern(A(b1=1) % A(b2=1)) == {1}
True
>>> get_bonds_in_pattern(A(b1=1) % A(b1=2, b2=1) % A(b1=2)) == {1, 2}
True

pysb.pattern.get_half_bonds_in_pattern(pat)
Return the list of integer bond numbers used in a pattern

To return as a set, use get_bonds_in_pattern().

Parameters

pat [ComplexPattern, MonomerPattern, or None] A pattern from which bond numberings are
extracted

Returns

list Bond numbers used in the supplied pattern

Examples

>>> A = Monomer('A', ['b1', 'b2'], _export=False)
>>> get_half_bonds_in_pattern(A(b1=None, b2=None))
[]
>>> get_half_bonds_in_pattern(A(b1=1) % A(b2=1))
[1, 1]

pysb.pattern.match_complex_pattern(pattern, candidate, exact=False, count=False)
Compare two ComplexPatterns against each other

Parameters

pattern: pysb.ComplexPattern

candidate: pysb.Complex.Pattern

exact: bool Set to True for exact matches (i.e. species equivalence, or exact graph isomor-
phism). Set to False to compare as a pattern (i.e. subgraph isomorphism).

count: bool Provide match counts for pattern in candidate
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Returns

True if pattern matches candidate, False otherwise

pysb.pattern.match_reaction_pattern(pattern, candidate)
Compare two ReactionPatterns against each other

This function tests that every ComplexPattern in pattern has a matching ComplexPattern in candidate. If there’s
a one-to-one mapping of ComplexPattern matches, this is straightforward. Otherwise, we need to check for a
maximum matching - a graph theory term referring to the maximum number of edges possible in a bipartite
graph (representing ComplexPattern compatibility between pattern and candidate) without overlapping nodes.
If every ComplexPattern in pattern has a match, then return True, otherwise return False. This algorithm is
polynomial time (although the ComplexPattern isomorphism comparisons using match_complex_pattern are
not).

Parameters

pattern: pysb.ReactionPattern

candidate: pysb.ReactionPattern

Returns

True if pattern matches candidate, False otherwise.

pysb.pattern.monomers_from_pattern(pattern)
Return the set of monomers used in a pattern

4.9 Visualizing model structure

PySB currently includes a handful of tools for visualizing the structure of models. These can be supplemented with
existing tools for visualizing the structure of rule-based models (e.g., contact maps and influence maps for Kappa
models).

4.9.1 Render a model’s reaction network (pysb.tools.render_reactions)

Usage

Usage: python -m pysb.tools.render_reactions mymodel.py > mymodel.dot

If your model uses species as expression rates, you can visualize these interactions by including the –include-rate-
species option:

python -m pysb.tools.render_reactions --include-rate-species mymodel.py > mymodel.dot

Renders the reactions produced by a model into the “dot” graph format which can be visualized with Graphviz.

To create a PDF from the .dot file, use the “dot” command from Graphviz:

dot mymodel.dot -T pdf -O

This will create mymodel.dot.pdf. You can also change the “dot” command to one of the other Graphviz drawing tools
for a different type of layout. Note that you can pipe the output of render_reactions straight into Graphviz without
creating an intermediate .dot file, which is especially helpful if you are making continuous changes to the model and
need to visualize your changes repeatedly:
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python -m pysb.tools.render_reactions mymodel.py | dot -T pdf -o mymodel.pdf

Note that some PDF viewers will auto-reload a changed PDF, so you may not even need to manually reopen it every
time you rerun the tool.

Output for Robertson example model

The Robertson example model (in pysb.examples.robertson) contains the following three reactions:

• A -> B

• B + B -> B + C

• C + B -> C + A

The reaction network diagram for this system as generated by this module and rendered using dot is shown below:

Circular nodes (r0, r1 and r2) indicate reactions; square nodes (A(), B() and C()) indicate species. Incoming
arrows from a species node to a reaction node indicate that the species is a reactant; outgoing arrows from a reaction
node to a species node indicate that the species is a product. A hollow diamond-tipped arrow from a species to a
reaction indicates that the species is involved as both a reactant and a product, i.e., it serves as a “modifier” (enzyme
or catalyst).

pysb.tools.render_reactions.run(model, include_rate_species=False)
Render the reactions produced by a model into the “dot” graph format.

Parameters

model [pysb.core.Model] The model to render.

include_rate_species [bool]

If True, enable multigraph and add dashed edges from species used in expression
rates to the node representing the reaction.

Returns

string The dot format output.

4.9.2 Render a model’s species (pysb.tools.render_species)

Usage: python -m pysb.tools.render_species mymodel.py > mymodel.dot

Renders the species from a model into the “dot” graph format which can be visualized with Graphviz.

To create a PDF from the .dot file, use the Graphviz tools in the following command pipeline:
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ccomps -x mymodel.dot | dot | gvpack -m0 | neato -n2 -T pdf -o mymodel.pdf

You can also change the “dot” command to “circo” or “sfdp” for a different type of layout. Note that you can pipe the
output of render_species straight into a Graphviz command pipeline without creating an intermediate .dot file, which
is especially helpful if you are making continuous changes to the model and need to visualize your changes repeatedly:

python -m pysb.tools.render_species mymodel.py | ccomps -x | dot |
gvpack -m0 | neato -n2 -T pdf -o mymodel.pdf

Note that some PDF viewers will auto-reload a changed PDF, so you may not even need to manually reopen it every
time you rerun the tool.

pysb.tools.render_species.run(model)
Render the species from a model into the “dot” graph format.

Parameters

model [pysb.core.Model] The model to render.

Returns

string The dot format output.

4.10 Sensitivity anaylsis (pysb.tools.sensitivity_analysis)

class pysb.tools.sensitivity_analysis.InitialsSensitivity(*args, **kwargs)
Deprecated; use PairwiseSensitivity instead.

class pysb.tools.sensitivity_analysis.PairwiseSensitivity(solver, val-
ues_to_sample, ob-
jective_function,
observable,
sens_type=’initials’,
sample_list=None)

Pairwise sensitivity analysis of model parameters

This class calculates the sensitivity of a specified model Observable to changes in pairs of initial species con-
centrations. The results are stored in matrices described in Attributes.

Warning: The interface for this class is considered experimental and may change without warning as PySB
is updated.

Parameters

solver [pysb.simulator.Simulator] Simulator instance used to perform models. Must be ini-
tialized with tspan argument set.

values_to_sample [vector_like] Values to sample for each initial concentration of the
model.parameters values.

objective_function [function] A function that returns a scalar value. Used to calculate frac-
tion of changed that is used for calculating sensitivity. See Example.

observable [str] Observable name used in the objective_function.

sens_type: {‘params’, ‘initials’, ‘all’} Type of sensitivity analysis to perform.
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sample_list: list List of model pysb.Parameters names to be used.

References

1. Harris, L.A., Nobile, M.S., Pino, J.C., Lubbock, A.L.R., Besozzi, D., Mauri, G., Cazzaniga, P., and
Lopez, C.F. 2017. GPU-powered model analysis with PySB/cupSODA. Bioinformatics 33, pp.3492-
3494. https://academic.oup.com/bioinformatics/article/33/21/3492/3896987

Examples

Sensitivity analysis on the Tyson cell cycle model

>>> from pysb.examples.tyson_oscillator import model
>>> import numpy as np
>>> from pysb.simulator.scipyode import ScipyOdeSimulator
>>> np.set_printoptions(precision=4, suppress=True)
>>> tspan=np.linspace(0, 200, 201)
>>> observable = 'Y3'
>>> values_to_sample = [.8, 1.2]
>>> def obj_func_cell_cycle(out):
... timestep = tspan[:-1]
... y = out[:-1] - out[1:]
... freq = 0
... local_times = []
... prev = y[0]
... for n in range(1, len(y)):
... if y[n] > 0 > prev:
... local_times.append(timestep[n])
... freq += 1
... prev = y[n]
... local_times = np.array(local_times)
... local_freq = np.average(local_times)/len(local_times)*2
... return local_freq
>>> solver = ScipyOdeSimulator(model, tspan, integrator='lsoda',
→˓ integrator_options={'atol' : 1e-8,
→˓'rtol' : 1e-8, 'mxstep' :20000})
>>> sens = PairwiseSensitivity( values_to_sample=values_to_sample,
→˓ observable=observable, objective_function=obj_func_cell_cycle,
→˓ solver=solver )
>>> print(sens.b_matrix)
[[((0.8, 'cdc0'), (0.8, 'cdc0')) ((0.8, 'cdc0'), (1.2, 'cdc0'))
((0.8, 'cdc0'), (0.8, 'cyc0')) ((0.8, 'cdc0'), (1.2, 'cyc0'))]

[((1.2, 'cdc0'), (0.8, 'cdc0')) ((1.2, 'cdc0'), (1.2, 'cdc0'))
((1.2, 'cdc0'), (0.8, 'cyc0')) ((1.2, 'cdc0'), (1.2, 'cyc0'))]

[((0.8, 'cyc0'), (0.8, 'cdc0')) ((0.8, 'cyc0'), (1.2, 'cdc0'))
((0.8, 'cyc0'), (0.8, 'cyc0')) ((0.8, 'cyc0'), (1.2, 'cyc0'))]

[((1.2, 'cyc0'), (0.8, 'cdc0')) ((1.2, 'cyc0'), (1.2, 'cdc0'))
((1.2, 'cyc0'), (0.8, 'cyc0')) ((1.2, 'cyc0'), (1.2, 'cyc0'))]]

>>> sens.run()
>>> print(sens.p_matrix)#doctest: +NORMALIZE_WHITESPACE
[[ 0. 0. 5.0243 -4.5381]
[ 0. 0. 5.0243 -4.5381]
[ 5.0243 5.0243 0. 0. ]
[-4.5381 -4.5381 0. 0. ]]
>>> print(sens.p_prime_matrix) #doctest: +NORMALIZE_WHITESPACE
[[ 0. 0. 5.0243 -4.5381]

(continues on next page)
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[ 0. 0. 5.0243 -4.5381]
[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0. ]]

>>> print(sens.p_matrix - sens.p_prime_matrix) #doctest: +NORMALIZE_
→˓WHITESPACE
[[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0. ]
[ 5.0243 5.0243 0. 0. ]
[-4.5381 -4.5381 0. 0. ]]

>>> sens.create_boxplot_and_heatplot() #doctest: +SKIP
>>> values_to_sample = [.9, 1.1]
>>> sens = PairwiseSensitivity( values_to_sample=values_to_sample,
→˓ observable=observable, objective_function=obj_func_cell_cycle,
→˓ solver=solver, sens_type='params' )
>>> print(sens.b_matrix.shape == (14, 14))
True
>>> sens.run()
>>> print(sens.p_matrix)#doctest: +NORMALIZE_WHITESPACE
[[ 0. 0. 13.6596 13.6596 24.3955 4.7909 16.4603 11.3258

0.1621 31.2804 13.6596 13.6596 13.6596 13.6596]
[ 0. 0. -10.3728 -10.3728 -3.7277 -14.9803 -7.2934 -12.2416
-18.3144 0. -10.3728 -10.3728 -10.3728 -10.3728]

[ 13.6596 -10.3728 0. 0. 7.3582 -6.483 3.0794 -2.269
-10.6969 12.7261 0. 0. 0. 0. ]

[ 13.6596 -10.3728 0. 0. 7.3582 -6.483 3.0794 -2.269
-10.6969 12.7261 0. 0. 0. 0. ]

[ 24.3955 -3.7277 7.3582 7.3582 0. 0. 10.859 5.2577
-4.376 23.2285 7.3582 7.3582 7.3582 7.3582]

[ 4.7909 -14.9803 -6.483 -6.483 0. 0. -3.4036 -9.0762
-15.2185 3.8574 -6.483 -6.483 -6.483 -6.483 ]

[ 16.4603 -7.2934 3.0794 3.0794 10.859 -3.4036 0. 0.
-7.9417 15.5267 3.0794 3.0794 3.0794 3.0794]

[ 11.3258 -12.2416 -2.269 -2.269 5.2577 -9.0762 0. 0.
-13.128 10.859 -2.269 -2.269 -2.269 -2.269 ]

[ 0.1621 -18.3144 -10.6969 -10.6969 -4.376 -15.2185 -7.9417 -13.128
0. 0. -10.6969 -10.6969 -10.6969 -10.6969]

[ 31.2804 0. 12.7261 12.7261 23.2285 3.8574 15.5267 10.859
0. 0. 12.7261 12.7261 12.7261 12.7261]

[ 13.6596 -10.3728 0. 0. 7.3582 -6.483 3.0794 -2.269
-10.6969 12.7261 0. 0. 0. 0. ]

[ 13.6596 -10.3728 0. 0. 7.3582 -6.483 3.0794 -2.269
-10.6969 12.7261 0. 0. 0. 0. ]

[ 13.6596 -10.3728 0. 0. 7.3582 -6.483 3.0794 -2.269
-10.6969 12.7261 0. 0. 0. 0. ]

[ 13.6596 -10.3728 0. 0. 7.3582 -6.483 3.0794 -2.269
-10.6969 12.7261 0. 0. 0. 0. ]]

>>> print(sens.p_matrix - sens.p_prime_matrix) #doctest: +NORMALIZE_
→˓WHITESPACE
[[ 0. 0. 13.6596 13.6596 17.0373 11.2739 13.3809 13.5948

10.859 18.5543 13.6596 13.6596 13.6596 13.6596]
[ 0. 0. -10.3728 -10.3728 -11.0859 -8.4973 -10.3728 -9.9725

-7.6175 -12.7261 -10.3728 -10.3728 -10.3728 -10.3728]
[ 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. ]
[ 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. ]
[ 10.7358 6.6451 7.3582 7.3582 0. 0. 7.7796 7.5267
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6.3209 10.5024 7.3582 7.3582 7.3582 7.3582]
[ -8.8687 -4.6075 -6.483 -6.483 0. 0. -6.483 -6.8071

-4.5215 -8.8687 -6.483 -6.483 -6.483 -6.483 ]
[ 2.8006 3.0794 3.0794 3.0794 3.5008 3.0794 0. 0.

2.7553 2.8006 3.0794 3.0794 3.0794 3.0794]
[ -2.3339 -1.8688 -2.269 -2.269 -2.1005 -2.5932 0. 0.

-2.4311 -1.8671 -2.269 -2.269 -2.269 -2.269 ]
[-13.4976 -7.9417 -10.6969 -10.6969 -11.7342 -8.7355 -11.0211 -10.859

0. 0. -10.6969 -10.6969 -10.6969 -10.6969]
[ 17.6207 10.3728 12.7261 12.7261 15.8703 10.3404 12.4473 13.128

0. 0. 12.7261 12.7261 12.7261 12.7261]
[ 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. ]
[ 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. ]
[ 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. ]
[ 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. ]]
>>> sens.create_boxplot_and_heatplot() #doctest: +SKIP
>>> sens = PairwiseSensitivity( values_to_sample=values_to_sample,
→˓ observable=observable, objective_function=obj_func_cell_cycle,
→˓ solver=solver, sample_list=['k1', 'cdc0'] )
>>> print(sens.b_matrix)
[[((0.9, 'k1'), (0.9, 'k1')) ((0.9, 'k1'), (1.1, 'k1'))
((0.9, 'k1'), (0.9, 'cdc0')) ((0.9, 'k1'), (1.1, 'cdc0'))]

[((1.1, 'k1'), (0.9, 'k1')) ((1.1, 'k1'), (1.1, 'k1'))
((1.1, 'k1'), (0.9, 'cdc0')) ((1.1, 'k1'), (1.1, 'cdc0'))]

[((0.9, 'cdc0'), (0.9, 'k1')) ((0.9, 'cdc0'), (1.1, 'k1'))
((0.9, 'cdc0'), (0.9, 'cdc0')) ((0.9, 'cdc0'), (1.1, 'cdc0'))]

[((1.1, 'cdc0'), (0.9, 'k1')) ((1.1, 'cdc0'), (1.1, 'k1'))
((1.1, 'cdc0'), (0.9, 'cdc0')) ((1.1, 'cdc0'), (1.1, 'cdc0'))]]

Attributes

b_matrix: numpy.ndarray Matrix of 2-tuples containing (perturbation, species index)

b_prime_matrix: numpy.ndarray Same as b_matrix, only where one of the species con-
centrations is unchanged (i.e. with the single variable contribution removed)

index [list] List of model parameter names that will be used in analysis

index_of_param [dict] Dictionary that maps parameters name to index in orig_values array

objective_function [Identical to Parameters (see above).]

orig_vals [numpy.array] Original values of the model.Parameters.

p_matrix: numpy.ndarray Pairwise sensitivity matrix

p_prime_matrix: numpy.ndarray Normalized pairwise sensitivity matrix (in the sense that
it contains changes from the baseline, unperturbed case)

params_to_run [np.array] Parameter sets to be passed to simulator

create_boxplot_and_heatplot(x_axis_label=None, save_name=None, out_dir=None,
show=False)

Heat map and box plot of sensitivities

Parameters
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x_axis_label [str, optional] label for x asis

save_name [str, optional] name of figure to save

out_dir [str, option] output directory to save figures

show [bool] Show plot if True

Returns

matplotlib.figure.Figure The matplotlib figure object for further adjustments, if required

create_individual_pairwise_plots(save_name=None, out_dir=None, show=False)
Single plot containing heat plot of each specie pair

Parameters

save_name [str, optional] name ot save figure as

out_dir [str, optional] output directory

show [bool] show figure

Returns

matplotlib.figure.Figure The matplotlib figure object for further adjustments, if required

create_plot_p_h_pprime(save_name=None, out_dir=None, show=False)
Plot of P, H(B), and P’

See PairwiseSensitivity attributes for descriptions of these matrices

Parameters

save_name [str, optional] name to save figure as

out_dir [str, optional] location to save figure

show [bool] show the plot if True

Returns

matplotlib.figure.Figure The matplotlib figure object for further adjustments, if required

run(save_name=None, out_dir=None)
Run sensitivity analysis

Parameters

save_name [str, optional] prefix of saved files

out_dir [str, optional] location to save output if required

sensitivity_multiset
Sensitivity analysis multiset (also called “Q” matrix)

Returns

list List of lists containing the sensitivity analysis multiset

pysb.tools.sensitivity_analysis.cartesian_product(array_1, array_2)
Cartesian product between two lists

Parameters

array_1 [list_like]

array_2 [list_like]

Returns

4.10. Sensitivity anaylsis (pysb.tools.sensitivity_analysis) 99



pysb Documentation, Release 0+untagged.134.gd8a008d.dirty

np.array array of shape (len(array_1), len(array_2))

4.11 Importing from other formats (pysb.importers)

pysb.importers.bngl.model_from_bngl(filename, force=False, cleanup=True)
Convert a BioNetGen .bngl model file into a PySB Model.

Parameters

filename [string] A BioNetGen .bngl file

force [bool, optional] The default, False, will raise an Exception if there are any errors im-
porting the model to PySB, e.g. due to unsupported features. Setting to True will attempt
to ignore any import errors, which may lead to a model that only poorly represents the
original. Use at own risk!

cleanup [bool] Delete temporary directory on completion if True. Set to False for debugging
purposes.

Notes

The following features are not supported in PySB and will cause an error if present in a .bngl file:

• Fixed species (with a $ prefix, like $Null)

• BNG excluded or included reaction patterns (deprecated in BNG)

• BNG local functions

• Molecules with identically named sites, such as M(l,l)

• BNG’s custom rate law functions, such as MM and Sat (deprecated in BNG)

pysb.importers.sbml.model_from_sbml(filename, force=False, cleanup=True, **kwargs)
Create a PySB Model object from an Systems Biology Markup Language (SBML) file, using BioNetGen’s sbml-
Translator, which can attempt to extrapolate higher-level (rule-based) structure from an SBML source file (ar-
gument atomize=True). The model is first converted into BioNetGen language by sbmlTranslator, then PySB’s
BnglBuilder class converts the BioNetGen language model into a PySB Model.

Parameters

filename : A Systems Biology Markup Language .sbml file

force [bool, optional] The default, False, will raise an Exception if there are any errors im-
porting the model to PySB, e.g. due to unsupported features. Setting to True will attempt
to ignore any import errors, which may lead to a model that only poorly represents the
original. Use at own risk!

cleanup [bool] Delete temporary directory on completion if True. Set to False for debugging
purposes.

**kwargs: kwargs Keyword arguments to pass on to sbml_translator()

Notes

Requires the sbmlTranslator program (also known at Atomizer). If PySB was installed using “conda”, you can
install sbmlTranslator using “conda install -c alubbock atomizer”. It is bundled with BioNetGen if BNG is
installed by manual download and unzip.
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Read the sbmlTranslator documentation for further information on sbmlTranslator’s limitations.

pysb.importers.sbml.model_from_biomodels(accession_no, force=False, cleanup=True, mir-
ror=’ebi’, **kwargs)

Create a PySB Model based on a BioModels SBML model

Downloads file from BioModels (https://www.ebi.ac.uk/biomodels-main/) and runs it through
model_from_sbml(). See that function for further details on additional arguments and implementa-
tion details. Utilizes BioNetGen’s SBMLTranslator.

Parameters

accession_no [str] A BioModels accession number - the string ‘BIOMD’ followed by 10
digits, e.g. ‘BIOMD0000000001’. For brevity, just the last digits will be accepted as a
string, e.g. ‘1’ is equivalent the accession number in the previous sentence.

force [bool, optional] The default, False, will raise an Exception if there are any errors im-
porting the model to PySB, e.g. due to unsupported features. Setting to True will attempt
to ignore any import errors, which may lead to a model that only poorly represents the
original. Use at own risk!

cleanup [bool] Delete temporary directory on completion if True. Set to False for debugging
purposes.

mirror [str] Which BioModels mirror to use, either ‘ebi’ or ‘caltech’

**kwargs: kwargs Keyword arguments to pass on to sbml_translator()

Notes

Requires the sbmlTranslator program (also known at Atomizer). If PySB was installed using “conda”, you can
install sbmlTranslator using “conda install -c alubbock atomizer”. It is bundled with BioNetGen if BNG is
installed by manual download and unzip.

Read the sbmlTranslator documentation for further information on sbmlTranslator’s limitations.

Examples

>>> from pysb.importers.sbml import model_from_biomodels
>>> model = model_from_biomodels('1') #doctest: +SKIP
>>> print(model) #doctest: +SKIP
<Model 'pysb' (monomers: 12, rules: 17, parameters: 37, expressions: 0, ...

pysb.importers.sbml.sbml_translator(input_file, output_file=None, convention_file=None,
naming_conventions=None, user_structures=None,
molecule_id=False, atomize=False, path-
way_commons=False, verbose=False)

Run the BioNetGen sbmlTranslator binary to convert SBML to BNGL

This function runs the external program sbmlTranslator, included with BioNetGen, which converts SBML files
to BioNetGen language (BNGL). If PySB was installed using “conda”, you can install sbmlTranslator using
“conda install -c alubbock atomizer”. sbmlTranslator is bundled with BioNetGen if BNG is installed by manual
download and unzip.

Generally, PySB users don’t need to run this function directly; an SBML model can be imported to PySB in
a single step with model_from_sbml(). However, users may wish to note the parameters for this func-
tion, which alter the way the SBML file is processed. These parameters can be supplied as **kwargs to
model_from_sbml().
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For more detailed descriptions of the arguments, see the sbmlTranslator documentation.

Parameters

input_file [string] SBML input filename

output_file [string, optional] BNGL output filename

convention_file [string, optional] Conventions filename

naming_conventions [string, optional] Naming conventions filename

user_structures [string, optional] User structures filename

molecule_id [bool, optional] Use SBML molecule IDs (True) or names (False). IDs are less
descriptive but more BNGL friendly. Use only if the generated BNGL has syntactic errors

atomize [bool, optional] Atomize the model, i.e. attempt to infer molecular structure and
build rules from the model (True) or just perform a flat import (False)

pathway_commons [bool, optional] Use pathway commons to infer molecule binding. This
setting requires an internet connection and will query the pathway commons web service.

verbose [bool or int, optional (default: False)] Sets the verbosity level of the logger. See the
logging levels and constants from Python’s logging module for interpretation of integer
values. False leaves the logging verbosity unchanged, True is equal to DEBUG.

Returns

string BNGL output filename

4.12 Exporting to other formats (pysb.export)

Tools for exporting PySB models to a variety of other formats.

Exporting can be performed at the command-line or programmatically/interactively from within Python.

4.12.1 Command-line usage

At the command-line, run as follows:

python -m pysb.export model.py <format>

where model.py is a file containing a PySB model definition (i.e., contains an instance of pysb.core.Model
instantiated as a global variable). [format] should be the name of one of the supported formats:

• bngl

• bng_net

• json

• kappa

• potterswheel

• sbml

• pysb_flat

• mathematica

• matlab
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• stochkit

In all cases, the exported model code will be printed to standard out, allowing it to be inspected or redirected to another
file.

4.12.2 Interactive usage

Export functionality is implemented by this module’s top-level function export. For example, to export the “Robert-
son” example model as SBML, first import the model:

from pysb.examples.robertson import model

Then import the export function from this module:

from pysb.export import export

Call the export function, passing the model instance and a string indicating the desired format, which should be one
of the ones indicated in the list in the “Command-line usage” section above:

sbml_output = export(model, 'sbml')

The output (a string) can be inspected or written to a file, e.g. as follows:

with open('robertson.sbml', 'w') as f:
f.write(sbml_output)

4.12.3 Implementation of specific exporters

Information on the implementation of specific exporters can be found in the documentation for the exporter classes in
the package pysb.export:

Export SBML (pysb.export.sbml)

Module containing a class for exporting a PySB model to SBML using libSBML

For information on how to use the model exporters, see the documentation for pysb.export.

class pysb.export.sbml.SbmlExporter(*args, **kwargs)
A class for returning the SBML for a given PySB model.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

convert(level=(3, 2))
Convert the PySB model to a libSBML document

Requires the libsbml python package

Parameters

level: (int, int) The SBML level and version to use. The default is SBML level 3, version
2. Conversion to other levels/versions may not be possible or may lose fidelity.

Returns

libsbml.SBMLDocument A libSBML document converted form the PySB model
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export(level=(3, 2))
Export the SBML for the PySB model associated with the exporter

Requires libsbml package.

Parameters

level: (int, int) The SBML level and version to use. The default is SBML level 3, version
2. Conversion to other levels/versions may not be possible or may lose fidelity.

Returns

string String containing the SBML output.

Export ODEs to MATLAB (pysb.export.matlab)

A class for converting a PySB model to a set of ordinary differential equations for integration in MATLAB.

Note that for use in MATLAB, the name of the .m file must match the name of the exported MATLAB class (e.g.,
robertson.m for the example below).

For information on how to use the model exporters, see the documentation for pysb.export.

Output for the Robertson example model

Information on the form and usage of the generated MATLAB class is contained in the documentation for the MAT-
LAB model, as shown in the following example for pysb.examples.robertson:

classdef robertson
% A simple three-species chemical kinetics system known as "Robertson's
% example", as presented in:
%
% H. H. Robertson, The solution of a set of reaction rate equations, in Numerical
% Analysis: An Introduction, J. Walsh, ed., Academic Press, 1966, pp. 178-182.
%
% A class implementing the ordinary differential equations
% for the robertson model.
%
% Save as robertson.m.
%
% Generated by pysb.export.matlab.MatlabExporter.
%
% Properties
% ----------
% observables : struct
% A struct containing the names of the observables from the
% PySB model as field names. Each field in the struct
% maps the observable name to a matrix with two rows:
% the first row specifies the indices of the species
% associated with the observable, and the second row
% specifies the coefficients associated with the species.
% For any given timecourse of model species resulting from
% integration, the timecourse for an observable can be
% retrieved using the get_observable method, described
% below.
%
% parameters : struct
% A struct containing the names of the parameters from the

(continues on next page)
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% PySB model as field names. The nominal values are set by
% the constructor and their values can be overriden
% explicitly once an instance has been created.
%
% Methods
% -------
% robertson.odes(tspan, y0)
% The right-hand side function for the ODEs of the model,
% for use with MATLAB ODE solvers (see Examples).
%
% robertson.get_initial_values()
% Returns a vector of initial values for all species,
% specified in the order that they occur in the original
% PySB model (i.e., in the order found in model.species).
% Non-zero initial conditions are specified using the
% named parameters included as properties of the instance.
% Hence initial conditions other than the defaults can be
% used by assigning a value to the named parameter and then
% calling this method. The vector returned by the method
% is used for integration by passing it to the MATLAB
% solver as the y0 argument.
%
% robertson.get_observables(y)
% Given a matrix of timecourses for all model species
% (i.e., resulting from an integration of the model),
% get the trajectories corresponding to the observables.
% Timecourses are returned as a struct which can be
% indexed by observable name.
%
% Examples
% --------
% Example integration using default initial and parameter
% values:
%
% >> m = robertson();
% >> tspan = [0 100];
% >> [t y] = ode15s(@m.odes, tspan, m.get_initial_values());
%
% Retrieving the observables:
%
% >> y_obs = m.get_observables(y)
%
properties

observables
parameters

end

methods
function self = robertson()

% Assign default parameter values
self.parameters = struct( ...

'k1', 0.040000000000000001, ...
'k2', 30000000, ...
'k3', 10000, ...
'A_0', 1, ...
'B_0', 0, ...
'C_0', 0);

(continues on next page)
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% Define species indices (first row) and coefficients
% (second row) of named observables
self.observables = struct( ...

'A_total', [1; 1], ...
'B_total', [2; 1], ...
'C_total', [3; 1]);

end

function initial_values = get_initial_values(self)
% Return the vector of initial conditions for all
% species based on the values of the parameters
% as currently defined in the instance.

initial_values = zeros(1,3);
initial_values(1) = self.parameters.A_0; % A()
initial_values(2) = self.parameters.B_0; % B()
initial_values(3) = self.parameters.C_0; % C()

end

function y = odes(self, tspan, y0)
% Right hand side function for the ODEs

% Shorthand for the struct of model parameters
p = self.parameters;

% A();
y(1,1) = -p.k1*y0(1) + p.k3*y0(2)*y0(3);
% B();
y(2,1) = p.k1*y0(1) - p.k2*power(y0(2), 2) - p.k3*y0(2)*y0(3);
% C();
y(3,1) = p.k2*power(y0(2), 2);

end

function y_obs = get_observables(self, y)
% Retrieve the trajectories for the model observables
% from a matrix of the trajectories of all model
% species.

% Initialize the struct of observable timecourses
% that we will return
y_obs = struct();

% Iterate over the observables;
observable_names = fieldnames(self.observables);
for i = 1:numel(observable_names)

obs_matrix = self.observables.(observable_names{i});
if isempty(obs_matrix)

y_obs.(observable_names{i}) = zeros(size(y, 1), 1);
continue

end
species = obs_matrix(1, :);
coefficients = obs_matrix(2, :);
y_obs.(observable_names{i}) = ...

y(:, species) * coefficients';
end

end
(continues on next page)
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end
end

class pysb.export.matlab.MatlabExporter(model, docstring=None)
A class for returning the ODEs for a given PySB model for use in MATLAB.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

export()
Generate a MATLAB class definition containing the ODEs for the PySB model associated with the ex-
porter.

Returns

string String containing the MATLAB code for an implementation of the model’s ODEs.

Export ODEs to Mathematica (pysb.export.mathematica)

Module containing a class for converting a PySB model to a set of ordinary differential equations for integration or
analysis in Mathematica.

For information on how to use the model exporters, see the documentation for pysb.export.

Output for the Robertson example model

The Mathematica code produced will follow the form as given below for pysb.examples.robertson:

(*
A simple three-species chemical kinetics system known as "Robertson's
example", as presented in:

H. H. Robertson, The solution of a set of reaction rate equations, in Numerical
Analysis: An Introduction, J. Walsh, ed., Academic Press, 1966, pp. 178-182.

Mathematica model definition file for model robertson.
Generated by pysb.export.mathematica.MathematicaExporter.

Run with (for example):
tmax = 10
soln = NDSolve[Join[odes, initconds], slist, {t, 0, tmax}]
Plot[s0[t] /. soln, {t, 0, tmax}, PlotRange -> All]

*)

(* Parameters *)
k1 = 0.040000000000000001;
k2 = 30000000;
k3 = 10000;
A0 = 1;
B0 = 0;
C0 = 0;

(* List of Species *)
(* s0[t] = A() *)
(* s1[t] = B() *)
(* s2[t] = C() *)

(continues on next page)
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(* ODEs *)
odes = {
s0'[t] == -k1*s0[t] + k3*s1[t]*s2[t],
s1'[t] == k1*s0[t] - k2*s1[t]^2 - k3*s1[t]*s2[t],
s2'[t] == k2*s1[t]^2
}

(* Initial Conditions *)
initconds = {
s0[0] == A0,
s1[0] == B0,
s2[0] == C0
}

(* List of Variables (e.g., as an argument to NDSolve) *)
solvelist = {
s0[t],
s1[t],
s2[t]
}

(* Run the simulation -- example *)
tmax = 100
soln = NDSolve[Join[odes, initconds], solvelist, {t, 0, tmax}]

(* Observables *)
Atotal = (s0[t] * 1) /. soln
Btotal = (s1[t] * 1) /. soln
Ctotal = (s2[t] * 1) /. soln

The output consists of a block of commands that define the ODEs, parameters, species and other variables for the
model, along with a set of descriptive comments. The sections are as follows:

• The header comments identify the model and show an example of how to integrate the ODEs in Mathematica.

• The parameters block defines the numerical values of the named parameters.

• The list of species gives the mapping between the indexed species (s0, s1, s2) and their representation in PySB
(A(), B(), C()).

• The ODEs block defines the set of ordinary differential equations and assigns the set of equations to the variable
odes.

• The initial conditions block defines the initial values for each species and assigns the set of conditions to the
variable initconds.

• The “list of variables” block enumerates all of the species in the model (s0[t], s1[t], s2[t]) and assigns
them to the variable solvelist; this list can be passed to the Mathematica command NDSolve to indicate
the variables to be solved for.

• This is followed by an example of how to call NDSolve to integrate the equations.

• Finally, the observables block enumerates the observables in the model, expressing each one as a linear combi-
nation of the appropriate species in the model. The interpolating functions returned by NDSolve are substituted
in from the solution variable soln, allowing the observables to be plotted.

Note that Mathematica does not permit underscores in variable names, so any underscores used in PySB variables will
be removed (e.g., A_total will be converted to Atotal).
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class pysb.export.mathematica.MathematicaExporter(model, docstring=None)
A class for returning the ODEs for a given PySB model for use in Mathematica.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

export()
Generate the corresponding Mathematica ODEs for the PySB model associated with the exporter.

Returns

string String containing the Mathematica code for the model’s ODEs.

Export ODEs to PottersWheel (pysb.export.potterswheel)

Module containing a class for converting a PySB model to an equivalent set of ordinary differential equations for
integration or analysis in PottersWheel.

For information on how to use the model exporters, see the documentation for pysb.export.

Output for the Robertson example model

The PottersWheel code produced will follow the form as given below for pysb.examples.robertson:

% A simple three-species chemical kinetics system known as "Robertson's
% example", as presented in:
%
% H. H. Robertson, The solution of a set of reaction rate equations, in Numerical
% Analysis: An Introduction, J. Walsh, ed., Academic Press, 1966, pp. 178-182.
%
% PottersWheel model definition file
% save as robertson.m
function m = robertson()

m = pwGetEmptyModel();

% meta information
m.ID = 'robertson';
m.name = 'robertson';
m.description = '';
m.authors = {''};
m.dates = {''};
m.type = 'PW-1-5';

% dynamic variables
m = pwAddX(m, 's0', 1.000000e+00);
m = pwAddX(m, 's1', 0.000000e+00);
m = pwAddX(m, 's2', 0.000000e+00);

% dynamic parameters
m = pwAddK(m, 'k1', 4.000000e-02);
m = pwAddK(m, 'k2', 3.000000e+07);
m = pwAddK(m, 'k3', 1.000000e+04);
m = pwAddK(m, 'A_0', 1.000000e+00);
m = pwAddK(m, 'B_0', 0.000000e+00);
m = pwAddK(m, 'C_0', 0.000000e+00);

% ODEs

(continues on next page)
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m = pwAddODE(m, 's0', '-k1*s0 + k3*s1*s2');
m = pwAddODE(m, 's1', 'k1*s0 - k2*power(s1, 2) - k3*s1*s2');
m = pwAddODE(m, 's2', 'k2*power(s1, 2)');

% observables
m = pwAddY(m, 'A_total', '1.000000 * s0');
m = pwAddY(m, 'B_total', '1.000000 * s1');
m = pwAddY(m, 'C_total', '1.000000 * s2');

% end of PottersWheel model robertson

class pysb.export.potterswheel.PottersWheelExporter(model, docstring=None)
A class for returning the PottersWheel equivalent for a given PySB model.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

export()
Generate the PottersWheel code for the ODEs of the PySB model associated with the exporter.

Returns

string String containing the PottersWheel code for the ODEs.

Export BNGL (pysb.export.bngl)

Module containing a class for exporting a PySB model to BNGL.

Serves as a wrapper around pysb.generator.bng.BngGenerator.

For information on how to use the model exporters, see the documentation for pysb.export.

class pysb.export.bngl.BnglExporter(model, docstring=None)
A class for returning the BNGL for a given PySB model.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

export()
Generate the corresponding BNGL for the PySB model associated with the exporter. A wrapper around
pysb.generator.bng.BngGenerator.

Returns

string The BNGL output for the model.

Export BNGL NET file (pysb.export.bng_net)

Module containing a class for getting the BNGL NET file for a given PySB model.

Serves as a wrapper around pysb.bng.generate_network(), which generates the BNGL for the model and
then invokes BNG to generate the NET file.

For information on how to use the model exporters, see the documentation for pysb.export.

class pysb.export.bng_net.BngNetExporter(model, docstring=None)
A class for generating the BNG NET file for a given PySB model.

Inherits from pysb.export.Export, which implements basic functionality for all exporters.
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export()
Generate the BNGL NET file for the PySB model associated with the exporter. A wrapper around pysb.
bng.generate_network().

Returns

string The NET file output for the model, generated by BNG.

Export Kappa (pysb.export.kappa)

Module containing a class for returning the Kappa equivalent for a given PySB model.

Serves as a wrapper around pysb.generator.kappa.KappaGenerator.

For information on how to use the model exporters, see the documentation for pysb.export.

class pysb.export.kappa.KappaExporter(model, docstring=None)
A class for returning the Kappa for a given PySB model.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

export(dialect=’kasim’)
Generate the corresponding Kappa for the PySB model associated with the exporter. A wrapper around
pysb.generator.kappa.KappaGenerator.

Parameters

dialect [(optional) string, either ‘kasim’ (default) or ‘complx’] The Kappa file syntax
for the Kasim simulator is slightly different from that of the complx analyzer. This
argument specifies which type of Kappa to produce (‘kasim’ is the default).

Returns

string The Kappa output.

Export a “flat” PySB model (pysb.export.pysb_flat)

A module containing a class that exports a PySB model to a single Python source file that, when imported, will recreate
the same model. This is intended for saving a dynamically generated model so that it can be reused without re-running
the dynamic generation process. Note that any macro calls and other program structure in the original model are
“flattened” in the process.

For information on how to use the model exporters, see the documentation for pysb.export.

Structure of the Python code

The standalone Python code calls Model(), then defines Monomers, Parameters, Expressions (constant), Compart-
ments, Observables, Expressions (dynamic), Rules and initial conditions in that order. This can be considered a sort
of “repr()” for a full model.

If the output is saved as foo.py then one may load the model with the following line:

from foo import model

class pysb.export.pysb_flat.PysbFlatExporter(model, docstring=None)
A class for generating PySB “flat” model source code from a model.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.
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export()
Export PySB source code from a model.

Returns

string String containing the Python code.

Export to StochKit (pysb.export.stochkit)

Module containing a class to return the StochKit XML equivalent of a model

Contains code based on the gillespy <https://github.com/JohnAbel/gillespy> library with permission from author Brian
Drawert.

For information on how to use the model exporters, see the documentation for pysb.export.

class pysb.export.stochkit.StochKitExporter(model, docstring=None)
A class for returning the Kappa for a given PySB model.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

export(initials=None, param_values=None)
Generate the corresponding StochKit2 XML for a PySB model

Parameters

initials [list of numbers] List of initial species concentrations overrides (must be same
length as model.species). If None, the concentrations from the model are used.

param_values [list] List of parameter value overrides (must be same length as
model.parameters). If None, the parameter values from the model are used.

Returns

string The model in StochKit2 XML format

Export JSON (pysb.export.json)

Module containing a class for exporting a PySB model to JSON

For information on how to use the model exporters, see the documentation for pysb.export.

class pysb.export.json.JsonExporter(model, docstring=None)
A class for returning the JSON for a given PySB model.

Inherits from pysb.export.Exporter, which implements basic functionality for all exporters.

export(include_netgen=False)
Generate the corresponding JSON for the PySB model associated with the exporter.

Parameters

include_netgen: bool Include cached network generation data (reactions, species, local
function-derived parameters and expressions) if True.

Returns

string The JSON output for the model.

112 Chapter 4. PySB Modules Reference



pysb Documentation, Release 0+untagged.134.gd8a008d.dirty

class pysb.export.json.PySBJSONEncoder(*, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None,
default=None)

Encode a PySB model in JSON

This encoder stores the model without caching the reaction network. To also store the reaction network, see
PySBJSONWithNetworkEncoder.

Attributes correspond to their PySB equivalents (monomers, parameters, etc.) and are mostly stored verbatim,
with the following exceptions.

• MultiStates and the ANY and WILD state values use a special object format

• References to other components are stored using the component name

• Sympy expressions are encoded as strings using the default encoder

The protocol number (currently: 1) specifies semantic model compatibility, and should be incremented if
new features are added which affect how a model is simulated or prevent a model being loaded by pysb.
importers.json.PySBJSONDecoder().

default(o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
# Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

class pysb.export.json.PySBJSONWithNetworkEncoder(*, skipkeys=False,
ensure_ascii=True,
check_circular=True, al-
low_nan=True, sort_keys=False,
indent=None, separators=None,
default=None)

Encode a PySB model and its reaction network in JSON

This encoder stores the model including the cached reaction network. To encode the model without the reaction
network, see PySBJSONEncoder, which also includes implementation details.

exception pysb.export.CompartmentsNotSupported
Compartments are not supported by this exporter

exception pysb.export.ExportError

class pysb.export.Exporter(model, docstring=None)
Base class for all PySB model exporters.

Export functionality is implemented by subclasses of this class. The pattern for model export is the same for all
exporter subclasses: a model is passed to the exporter constructor and the export method on the instance is
called.

Parameters
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model [pysb.core.Model] The model to export.

docstring [string (optional)] The header comment to include at the top of the exported file.

Examples

Exporting the “Robertson” example model to SBML using the SbmlExporter subclass:

>>> from pysb.examples.robertson import model
>>> from pysb.export.sbml import SbmlExporter
>>> e = SbmlExporter(model)
>>> sbml_output = e.export()

docstring = None
Header comment to include at the top of the exported file.

export()
The export method, which must be implemented by any subclass.

All implementations of this method are expected to return a single string containing the representation of
the model in the desired format.

model = None
The model to export.

exception pysb.export.ExpressionsNotSupported
Expressions are not supported by this exporter

exception pysb.export.LocalFunctionsNotSupported
Local functions are not supported by this exporter

pysb.export.export(model, format, docstring=None)
Top-level function for exporting a model to a given format.

Parameters

model [pysb.core.Model] The model to export.

format [string] A string indicating the desired export format.

docstring [string (optional)] The header comment to include at the top of the exported file.

pysb.export.pad(text, depth=0)
Dedent multi-line string and pad with spaces.
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CHAPTER 5

Useful References

A collection of links for learning more about Python and other tools used by PySB.

5.1 Python Language

For those unfamiliar with Python or programming there are several resources available online. We have found the ones
below useful to learn Python in a practical and straightfoward manner.

Quick Python Overview:

• Instant Python

Python tutorials for beginners, experienced users, or if you want a refresher:

• Official Python tutorial

• Python for non-programmers

• Dive into Python

• Thinking in Python

5.2 NumPy and SciPy

NumPy:

• NumPy for Matlab

• Also the Mathesaurus

• Matlab commands in Numerical Python cheatsheet

SciPy:

• Scientific Python
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5.3 BioNetGen

• BioNetGen tutorial

• Compartmental BNGL
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Indices and tables

• genindex

• modindex

• search
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Index

A
action() (pysb.bng.BngBaseInterface method), 58
action() (pysb.bng.BngConsole method), 59
action() (pysb.bng.BngFileInterface method), 59
add_annotation() (pysb.core.Model method), 35
add_component() (pysb.core.Model method), 35
add_initial() (pysb.core.SelfExporter static

method), 40
add_species() (pysb.pattern.SpeciesPatternMatcher

method), 90
all (pysb.simulator.SimulationResult attribute), 53
all_component_sets() (pysb.core.Model method),

35
all_components() (pysb.core.Model method), 35
AllObservablesInRules (class in

pysb.testing.modeltests), 56
ANY (class in pysb.core), 29
as_complex_pattern() (in module pysb.core), 41
as_reaction_pattern() (in module pysb.core), 41
assemble_chain_sequential_base() (in mod-

ule pysb.macros), 79
assemble_pore_sequential() (in module

pysb.macros), 76

B
base_filename (pysb.bng.BngBaseInterface at-

tribute), 58
bind() (in module pysb.macros), 66
bind_complex() (in module pysb.macros), 81
bind_table() (in module pysb.macros), 66
bind_table_complex() (in module pysb.macros),

82
bng_filename (pysb.bng.BngBaseInterface attribute),

58
BngBaseInterface (class in pysb.bng), 58
BngConsole (class in pysb.bng), 58
BngFileInterface (class in pysb.bng), 59
BngInterfaceError, 60
BnglExporter (class in pysb.export.bngl), 110

BngNetExporter (class in pysb.export.bng_net), 110
BngSimulator (class in pysb.simulator), 44
build_rule_expression() (in module pysb.core),

41

C
cartesian_product() (in module

pysb.tools.sensitivity_analysis), 99
catalyze() (in module pysb.macros), 68
catalyze_complex() (in module pysb.macros), 71
catalyze_one_step() (in module pysb.macros), 71
catalyze_one_step_reversible() (in module

pysb.macros), 72
catalyze_state() (in module pysb.macros), 69
check() (pysb.testing.modeltests.TestSuite method), 57
check_all() (pysb.testing.modeltests.TestSuite

method), 58
check_dangling_bonds() (in module

pysb.pattern), 91
cleanup() (pysb.core.SelfExporter static method), 40
Compartment (class in pysb.core), 29
CompartmentAlreadySpecifiedError, 30
CompartmentsNotSupported, 113
ComplexPattern (class in pysb.core), 30
Component (class in pysb.core), 30
ComponentDuplicateNameError, 31
ComponentSet (class in pysb.core), 31
ConstantExpressionError, 33
contact_map (pysb.kappa.StaticAnalysisResult

attribute), 62
contact_map() (in module pysb.kappa), 62
convert() (pysb.export.sbml.SbmlExporter method),

103
copy() (pysb.core.ComplexPattern method), 30
create_boxplot_and_heatplot()

(pysb.tools.sensitivity_analysis.PairwiseSensitivity
method), 98

create_individual_pairwise_plots()
(pysb.tools.sensitivity_analysis.PairwiseSensitivity
method), 99
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create_plot_p_h_pprime()
(pysb.tools.sensitivity_analysis.PairwiseSensitivity
method), 99

CupSodaSimulator (class in pysb.simulator), 45

D
DanglingBondError, 33
dataframe (pysb.simulator.SimulationResult attribute),

53
default() (pysb.export.json.PySBJSONEncoder

method), 113
degrade() (in module pysb.macros), 74
docstring (pysb.export.Exporter attribute), 114
drug_binding() (in module pysb.macros), 84
DuplicateMonomerError, 33
DuplicateSiteError, 33

E
enable_synth_deg() (pysb.core.Model method), 35
equilibrate() (in module pysb.macros), 65
execute() (pysb.bng.BngFileInterface method), 59
expand_expr() (pysb.core.Expression method), 33
expand_obs() (pysb.core.Observable method), 39
export() (in module pysb.export), 114
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method), 110
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method), 109
export() (pysb.export.matlab.MatlabExporter

method), 107
export() (pysb.export.potterswheel.PottersWheelExporter

method), 110
export() (pysb.export.pysb_flat.PysbFlatExporter

method), 111
export() (pysb.export.sbml.SbmlExporter method),
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export() (pysb.export.stochkit.StochKitExporter

method), 112
Exporter (class in pysb.export), 113
ExportError, 113
Expression (class in pysb.core), 33
ExpressionError, 33
expressions (pysb.simulator.SimulationResult at-

tribute), 53
expressions_constant() (pysb.core.Model

method), 35

expressions_dynamic() (pysb.core.Model
method), 35

ExpressionsNotSupported, 114
extract_site_conditions() (in module

pysb.core), 41

F
filter() (pysb.core.ComponentSet method), 31
FilterPredicate (class in pysb.pattern), 85
flux_map (pysb.kappa.SimulationResult attribute), 62
Function (class in pysb.pattern), 85

G
generate_equations() (in module pysb.bng), 60
generate_network() (in module pysb.bng), 60
generate_network() (pysb.bng.BngConsole

method), 59
get() (pysb.core.ComponentSet method), 32
get_annotations() (pysb.core.Model method), 35
get_bonds_in_pattern() (in module

pysb.pattern), 92
get_half_bonds_in_pattern() (in module

pysb.pattern), 92
get_species_index() (pysb.core.Model method),
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H
has_synth_deg() (pysb.core.Model method), 35

I
index() (pysb.core.ComponentSet method), 32
influence_map (pysb.kappa.StaticAnalysisResult at-

tribute), 62
influence_map() (in module pysb.kappa), 62
Initial (class in pysb.core), 33
initial() (pysb.core.Model method), 35
InitialConditionsView (class in pysb.core), 33
InitialsSensitivity (class in

pysb.tools.sensitivity_analysis), 95
InvalidComplexPatternException, 33
InvalidComponentNameError, 33
InvalidInitialConditionError, 33
InvalidReactionPatternException, 33
InvalidReversibleSynthesisDegradationRule,

33
is_concrete() (pysb.core.ComplexPattern method),

30
is_concrete() (pysb.core.MonomerPattern method),

37
is_constant_expression()

(pysb.core.Expression method), 33
is_deg() (pysb.core.Rule method), 40
is_equivalent_to() (pysb.core.ComplexPattern

method), 30
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is_site_concrete() (pysb.core.MonomerPattern
method), 37

is_state_bond_tuple() (in module pysb.core), 41
is_synth() (pysb.core.Rule method), 40
items() (pysb.core.ComponentSet method), 32

J
JsonExporter (class in pysb.export.json), 112
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KappaExporter (class in pysb.export.kappa), 111
KappaSimulator (class in pysb.simulator), 51
KasaInterfaceError, 61
KasimInterfaceError, 62
keys() (pysb.core.ComponentSet method), 32
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load() (pysb.simulator.SimulationResult class method),
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load_bngl() (pysb.bng.BngConsole method), 59
load_equations() (in module pysb.bng), 60
LocalFunctionsNotSupported, 114

M
match() (pysb.pattern.SpeciesPatternMatcher method),
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pysb.pattern), 92
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pysb.pattern), 93
matches() (pysb.core.ComplexPattern method), 30
matches() (pysb.core.ReactionPattern method), 39
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MatlabExporter (class in pysb.export.matlab), 107
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model (pysb.export.Exporter attribute), 114
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ModelAssertion (class in pysb.testing.modeltests),
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Module (class in pysb.pattern), 86
modules (pysb.core.Model attribute), 35
Monomer (class in pysb.core), 36
MonomerPattern (class in pysb.core), 37
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pysb.pattern), 93

MultiState (class in pysb.core), 38

N
Name (class in pysb.pattern), 86
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NoRulesError, 60
nsims (pysb.simulator.SimulationResult attribute), 54
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observable() (pysb.simulator.SimulationResult

method), 54
observables (pysb.simulator.SimulationResult at-

tribute), 55
odes (pysb.core.Model attribute), 35
odesolve() (in module pysb.integrate), 42
OdeView (class in pysb.core), 39
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pad() (in module pysb.export), 114
PairwiseSensitivity (class in

pysb.tools.sensitivity_analysis), 95
Parameter (class in pysb.core), 39
parameters_all() (pysb.core.Model method), 35
parameters_compartments() (pysb.core.Model

method), 35
parameters_expressions() (pysb.core.Model

method), 35
parameters_initial_conditions()

(pysb.core.Model method), 36
parameters_rules() (pysb.core.Model method), 36
parameters_unused() (pysb.core.Model method),

36
parse_bngl_expr() (in module pysb.bng), 61
Pattern (class in pysb.pattern), 86
PopulationMap (class in pysb.simulator), 55
pore_bind() (in module pysb.macros), 78
pore_transport() (in module pysb.macros), 77
PottersWheelExporter (class in

pysb.export.potterswheel), 110
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pysb.export.bng_net (module), 110
pysb.export.bngl (module), 110
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pysb.export.pysb_flat (module), 111
pysb.export.sbml (module), 103
pysb.export.stochkit (module), 112
pysb.importers.bngl (module), 100
pysb.importers.sbml (module), 100
pysb.integrate (module), 41
pysb.kappa (module), 61
pysb.macros (module), 64
pysb.pattern (module), 85
pysb.simulator (module), 44
pysb.testing.modeltests (module), 56
pysb.tools.render_reactions (module), 93
pysb.tools.render_species (module), 94
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PysbFlatExporter (class in pysb.export.pysb_flat),
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PySBJSONEncoder (class in pysb.export.json), 112
PySBJSONWithNetworkEncoder (class in

pysb.export.json), 113
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pysb.testing.modeltests), 56
ReactionPattern (class in pysb.core), 39
ReactionPatternMatcher (class in pysb.pattern),
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read_netfile() (pysb.bng.BngBaseInterface

method), 58
read_simulation_results()

(pysb.bng.BngBaseInterface method), 58
read_simulation_results_multi()

(pysb.bng.BngBaseInterface static method), 58
RedundantSiteConditionsError, 39
reload() (pysb.core.Model method), 36
rename() (pysb.core.Component method), 30
rename() (pysb.core.ComponentSet method), 32
rename() (pysb.core.SelfExporter static method), 40
reset_equations() (pysb.core.Model method), 36
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Rule (class in pysb.core), 39
rule_firing_species()

(pysb.pattern.SpeciesPatternMatcher method),
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RuleAssertion (class in pysb.testing.modeltests), 56
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